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Category: Research

Abstract: Fusion is the process of improving the efficiency of modularly con-
structed programs by transforming them into monolithic equivalents. This paper
defines a generalization of the standardbuild combinator which expresses uni-
form production of functorial contexts containing data of inductive types. It also
proves correct a fusion rule which generalizes thefold / build andfold /buildp

rules from the literature, and eliminates intermediate data structures of inductive
types without disturbing the contexts in which they are situated. An important
special case arises when this context is monadic. When it is, a second rule for fus-
ing combinations of producers and consumers via monad operations, rather than
via composition, is also available. We give examples illustrating both rules, and
consider their coalgebraic duals as well.

8.1 GENERALIZING SHORT CUT FUSION

8.1.1 Introducing Short Cut Fusion

Fusion is the process of improving the efficiency of modularly constructed pro-
grams by transforming them into monolithic equivalents. Short cut fusion [6] is
concerned with eliminating list traversals from compositions of components that
are “glued” together via intermediate lists. Short cut fusion uses a local transfor-
mation — known as thefoldr /build rule — to fuse computations which can
be written as compositions of applications of the uniform list-consuming function
foldr and the uniform list-producing functionbuild given by
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newtype Mu f = In {unIn :: f (Mu f)}

fold :: Functor f => (f a -> a) -> Mu f -> a
fold h (In k) = h (fmap (fold h) k)

build :: Functor f =>
(forall a. (f a -> a) -> c -> a) -> c -> Mu f

build g = g In

fold k . build g = g k

FIGURE 8.1. The fold and build combinators andfold /build rule.

foldr :: (b -> a -> a) -> a -> [b] -> a
foldr c n [] = n
foldr c n (x:xs) = c x (foldr c n xs)

build :: (forall a. (b -> a -> a) -> a -> a) -> [b]
build g = g (:) []

The functionfoldr is standard in the Haskell prelude. Intuitively,foldr c n
xs produces a value by replacing all occurrences of(:) in xs by c and the occur-
rence of[] in xs by n. Thus,sum xs = foldr (+) 0 xs sums the (numeric)
elements of the listxs . Uniform production of lists, on the other hand, is ac-
complished using the combinatorbuild , which takes as input a type-independent
template for constructing “abstract” lists and produces a corresponding “concrete”
list. Thus,build (\c n -> c 4 (c 7 n)) produces the list[4,7] . Uniform
list transformers can be written in terms of bothfoldr andbuild . For example,
the functionmapcan be implemented as

map :: (a -> b) -> [a] -> [b]
map f xs = build (\c n -> foldr (c . f) n xs)

The foldr /build rule capitalizes on the uniform production and consump-
tion of lists to improve the performance of list-manipulating programs. It says

foldr c n (build g) = g c n (8.1)

If sqr x = x * x , then this rule can be used, for example, to transform the
modular functionsum . map sqr :: [Int] -> Int which produces an in-
termediate list into an optimized form which does not:

sum (map sqr xs) = foldr (+) 0
(build (\c n -> foldr (c . sqr) n xs))

= (\c n -> foldr (c . sqr) n xs) (+) 0
= foldr ((+) . sqr) 0 xs

8.1.2 Short Cut Fusion for Inductive Types

Inductive datatypes are fixed points of functors. Functors can be implemented in
Haskell as type constructors supportingfmap functions as follows:
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buildp :: Functor f =>
(forall a. (f a -> a) -> c -> (a,z)) -> c -> (Mu f, z)

buildp g = g In

fmap (fold k) . buildp g = g k

FIGURE 8.2. Thebuildp combinator and fold /buildp fusion rule.

class Functor f where
fmap :: (a -> b) -> f a -> f b

The functionfmap is expected to satisfy the two semantic functor laws stating
thatfmap preserves identities and composition.It is well-known that analogues of
foldr exist for every inductive datatype. As shown in [4, 5], every inductive type
also has an associated generalizedbuild combinator; the extra typec in the type
of build is motivated in those papers and to lesser extent in Section 8.3 below.
These combinators can be implemented generically in Haskell as in Figure 8.1.
There,Mu f represents the least fixed point of the functorf , andIn represents
the structure map forf , i.e., the “bundled” constructors for the datatypeMu f .
The fold /build fusion rule for inductive types can be used to eliminate data
structures of typeMu f from computations. Thefoldr andbuild combinators
for lists can be recovered by takingf to be the functor whose fixed point is[b] .
The foldr /build rule can be recovered by takingc to be the unit type as well.
As usual,fold andbuild implement the isomorphisms between inductive types
and their Church encodings.

8.1.3 Short Cut Fusion in Context

Short cut fusion handles compositionsg . f in which the data structure produced
by f is passed fromf to g. But what if f produces not just a single data structure,
but multiple such structures, embeds these data structures in a non-trivial context,
and passes the result tog for consumption of these data structures “in context”?
Is it possible to eliminate these intermediate data structures fromg . f while
keeping the context information, whichg may need to compute its result, intact?
Standard fusion techniques cannot achieve this: the intermediate data structures
produced byf cannot be decoupled from the context in which they are situated.
In [2], Fernandes et al. introduce a technique for fusing compositionsg . f in
which f passes tog not only the intermediate data structure produced byf , but
an additional datum as well. Althoughg requires this datum to compute its result,
it is not used when processing the intermediate data structure, and so only the
data structure itself needs to be eliminated fromg . f . To do this, [2] uses a
variant of the standardfold /build rule based on the combinatorbuildp , which
captures the extra datum by returning a data structure embedded in a pair context.
The datatype-genericbuildp combinator and its associatedfold /buildp fusion
rule are given in Figure 8.2. There,fmap is the map function

fmap :: (a -> b) -> (a,z) -> (b,z)
fmap f (a,z) = (f a, z)
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superbuild :: (Functor f, Functor h) =>
(forall a. (f a -> a) -> c -> h a) -> c -> h (Mu f)

superbuild g = g In

fmap (fold k) . (superbuild g) = g k

FIGURE 8.3. Thesuperbuild combinator and fold /superbuild fusion rule.

which witnesses the fact that the type constructorh given byh x = (x,z) is a
functor. The context information produced bybuildp and used by the consumer
in the left-hand side of thefold /buildp fusion rule is reflected in the pair return
types ofbuildp and its template argument, as well as in the mapping offold

across the pair in the associatedfold /buildp rule. This rule eliminates interme-
diate data structures within the context of pairing with an additional datum.

But now suppose we want to write a function

gsplitWhen :: (b -> Bool) -> [b] -> [[b]]

which splits a list into sublists at every element that satisfies a givenp. Note that
the functiongsplitWhen splits lists into arbitrary numbers of sublists, depend-
ing on the data they contain, and that the typez in the type ofbuildp cannot
be instantiated to allow the return of a number of lists which has the potential to
change on each program run. This means thatgsplitWhen cannot be written in
terms ofbuildp . Moreover, compositions ofgsplitWhen with functions that
consume each of the individual “inner” lists produced bygsplitWhen but re-
quire the information inherent in its “context list” to compute their results cannot
be fused using thefold /buildp rule. But why try to structure programs only
with contexts of the form(-,z) ? That is, why not consider a generalization
of thebuildp combinator, and a generalization of thefold /buildp fusion rule
which can be used to eliminate intermediate data structures, like those returned
by gsplitWhen , which appear in contexts other than just pairs? That is pre-
cisely what this paper does. We call these generalizationssuperbuild and the
fold /superbuild rule, respectively. Likebuildp and thefold /buildp rule,
our superbuild combinator andfold /superbuild fusion rule are available at
every inductive datatype. Datatype-generic versions are given in Figure 8.3; note
that the type of superbuild is actually generic in bothf andh. The generaliza-
tion of the pair context in the type ofbuildp is captured by the replacement in
the type ofsuperbuild of the type(x,z) by the typeh x for a more general
“context functor”h. This generalization is further reflected in the replacement of
thefmap function for pairs in thefold /buildp rule by thefmap function for the
more general context functorh in the fold /superbuild rule. Thefold com-
binator in thefold /superbuild rule is the one forMu f , as usual. Thesefmap

and fold functions are guaranteed to be defined precisely because the type of
superbuild requires bothf andh to be functors. We argue in Section 8.3 that
the fold /superbuild rule holds for a large class of functorsh.

Taking h x = x gives the generalizedbuild combinator andfold /build
rule from Figure 8.1, while takingh x = (x,z) gives thebuildp combina-
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tor andfold / buildp rule from Figure 8.2. In general, thefold /superbuild
rule can fuse compositions in which context information describable by non-pair
functors is passed, along with intermediate data structures, from producer to con-
sumer. Indeed, thefold /superbuild rule eliminates intermediate structures of
typeMu f obtained by mapping a consumer expressed as afold over the data of
typeMu f stored in a context specified by a functorh. Thus, settingc = [b] , h
x = [x] , andf to be the functor whose least fixed point is[b] , we can write

gsplitWhen p = superbuild go where
go c n z = case z of

[] -> []
[w] -> [c w n]
(w : ws) -> let xs = go c n ws

in if p w then (c w n) : xs
else (c w (head xs)) : (tail xs)

If lgh = foldr (\x -> (1+)) 0 then using thefold /superbuild rule to
fuse the compositionevLghs = map lgh . gsplitWhen even gives

evLghs’ z = case z of
[] -> []
[w] -> [1]
(w : ws) -> let xs = evLghs’ ws

in if even w then 1 : xs
else (head xs + 1) : (tail xs)

Note thatevLghs’ trades production and consumption of the list of intermediate
lists returned bygsplitWhen even in evLghs for production of the correspond-
ing list of values obtained by applyinglgh to each such list.

8.1.4 Short Cut Fusion in Effectful Contexts

The ability to fuse intermediate data structures in context turns out to be the
key to extending short cut fusion to the effectful setting. Although fusion in
the presence of computational effects has been studied by other researchers (see,
e.g., [10, 12, 14, 16]), short cut fusion in particular has not previously been for-
mally explored in this context. To perform short cut fusion in an effectful con-
text, the functional argument tosuperbuild , and thussuperbuild itself, must
have a monadic return type. Monads can be implemented in Haskell as type con-
structors supporting>>= andreturn operations as follows; these operations are
expected to satisfy the semantic monad laws.

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> mb

If m is a monad, settingh to m in superbuild ’s type gives themsuperbuild

combinator in Figure 8.4. The accompanyingfold /msuper build rule is the
natural “monadification” of thefold /superbuild rule; we give an example of
its use in Section 8.2. As we see in Section 8.3.3 thefold /msuper build rule
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msuperbuild :: (Functor f, Monad m) =>
(forall a. (f a -> a) -> c -> m a) -> c -> m (Mu f)

msuperbuild g = g In

msuperbuild g c >>= fold k = g k c >>= id

FIGURE 8.4. The msuperbuild combinator and fold /msuperbuild fusion
rule.

follows from thefold /super build rule and standard properties of monad mul-
tiplication. This rule does not eliminate the monadic context described bym, but
does eliminate intermediate data structures of typeMu f within that monadic con-
text. Moreover, although the rule does not change the type of the context contain-
ing the data structure, it can change the context itself, and so is more sophisticated
than its non-monadic counterpart.

The remainder of this paper is structured as follows. In Section 8.2 we ap-
ply our new fold /superbuild and fold /msuperbuild rules to substantive
examples. In Section 8.3 we show how thesuperbuild and msuperbuild

combinators are derived from initial algebra semantics, and prove the correct-
ness of their associated fusion rules. In Section 8.4 we give non-monadic and
monadicsuperdestroy /unfold rules dual to our non-monadic and monadic
fold /super build rules; our results forsuperbuild andmsuperbuild are
easily dualized to prove them correct. In Section 8.5 we discuss related work, and
in Section 8.6 we conclude and offer directions for future research. A Haskell im-
plementation of our results and an additional example highlighting the versatility
of our rules are available athttp://www.cs.nott.ac.uk/ ∼nxg .

8.2 EXAMPLES

In this section we give some more sophisticated examples showcasing the power
of the fold /superbuild and fold /msuperbuild fusion rules. Our first ex-
ample shows that thefold /superbuild rule can be used to eliminate inter-
mediate data structures other than lists. Our second example shows that the
fold /msuperbuild rule can eliminate data structures within the state monad.

Example 8.1.Consider the simple arithmetic expression datatype given by

data Opr = Add | Mul | Sub deriving (Eq, Show)

data Expr = Lit Int | Op Opr Expr Expr deriving (Eq, Show)

The fold combinator for expressions, the instance ofsuperbuild for expres-
sions wherec is Expr andh x is [x] , and the associated fusion rule are

foldExpr :: (Int -> a) -> (Opr -> a -> a -> a) -> Expr -> a
foldExpr l o e = case e of

Lit i -> l i
Op op e1 e2 -> o op (foldExpr l o e1)
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(foldExpr l o e2)

superbuildExpr :: (forall a. (Int -> a) ->
(Opr -> a -> a -> a) -> Expr -> [a]) -> Expr -> [Expr]

superbuildExpr g = g Lit Op

map (foldExpr l o e) (superbuildExpr g) = g l o e

If we define opToHas Add = (+) , opToHas Mul = (*) , and opToHas
Sub = (-) , then we can implement an interpreter which traces the evaluation
steps taken in computing the integer values represented by expressions as

trace :: Expr -> [Expr]
trace = superbuildExpr g

g :: (Int -> a) -> (Opr -> a -> a -> a) -> Expr -> [a]
g l o e = case e of

Lit i -> [l i]
Op op e1 e2 -> let b1 = foldExpr l o e1

b2 = foldExpr l o e2
e’ = o op b1 b2
Lit k = last (g Lit Op e1)
Lit j = last (g Lit Op e2)
b1s = g l o e1
b2s = g l o e2

in (e’ : (map (\x -> o op x b2)
(tail b1s))

++ (map (o op (last b1s))
(tail b2s))

++ [l (opToHas op k j)])

For example, if

myexp = Op Mul (Op Add (Lit 5) (Lit 6))
(Op Sub (Lit 7) (Lit 4))

thentrace myexp generates the trace

[ Op Mul (Op Add (Lit 5) (Lit 6)) (Op Sub (Lit 7) (Lit 4)),
Op Mul (Lit 11) (Op Sub (Lit 7) (Lit 4)),
Op Mul (Lit 11) (Lit 3), Lit 33 ]

Once an interpreter trace is built, we can perform various analyses of it. For
example, we can measure the computational effort required to compute the value
represented by each expression arising in the evaluation of a given expression.
For this we usecount , which counts 0 units of effort to compute a literal, 2 to
perform an addition, 3 to perform a subtraction, and 5 to perform a multiplication.

count Add x y = x + y + 2
count Sub x y = x + y + 3
count Mul x y = x + y + 5

We then have



VIII–120 CHAPTER 8. SHORT CUT FUSION FOR EFFECTS

costExprs :: Expr -> [Int]
costExprs expr = map (foldExpr (\x -> 0) count)

(superbuildExpr g expr)

Thus costExprs myexp generates the result[10,8,5,0] . Fusion using the
fold /superbuild rule givescostExprs’ g (\x -> 0) count — an equiv-
alent function in which no intermediate list of expressions is constructed.

Example 8.2.Pardo [14] shows that graph traversal algorithms, such as depth-first
and breadth-first traversal, can be written as calls to a monadicunfold combi-
nator. We show that these algorithms can be written in terms ofmsuper build .
The relationship between monadic and non-monadicunfold combinators, and
betweensuperbuild andmsuperbuild , is discusssed in Section 8.5 below..

A graph traversal is represented as a function which takes as input a list of
root vertices of a graph and returns a list containing the vertices met in order as
the graph is traversed. We can represent the vertices of a graph by integers, and a
graph by an adjacency list function for vertices as follows:

type V = Int
type Graph = V -> [V]

In a graph traversal, each vertex is visited at most once. To avoid repeated visits
to vertices we can use the state monad [13, 15] to maintain a list of vertices visited
previously in the computation and thread this list through the traversal. We there-
fore define a datatype ofvisit-dependent data, each element of which is a function
taking a list of vertices already visited as input and returning a datum depending
on that list together with an updated list of visited vertices. We have

data State s a = State {runstate :: s -> (s,a)}

instance Monad (State s) where
return a = State (\s -> (s,a))
t >>= f = State (\s -> let (s’,v) = runstate t s

in runstate (f v) s’)

type Vis a = State [V] a

Visit-dependent data support the following useful auxiliary functions:

data Unit = Unit

emp :: Vis a -> a
emp xs = snd (runstate xs [])

sunion :: V -> Vis Unit
sunion v = State (\vs -> (v:vs, Unit))

mem :: V -> Vis Bool
mem v = State (\vs -> (vs, elem v vs))

With this machinery we can define depth-first traversal as in Figure 8.5. There,
dft first allocates an empty list of visited vertices, then runsdepthFirst , yield-
ing a final list of visited vertices, and then de-allocates this visitation list and
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dft :: (V -> [V]) -> [V] -> [V]
dft g vs = emp (depthFirst g vs)

depthFirst :: (V -> [V]) -> [V] -> Vis [V]
depthFirst g = msuperbuild (df g)

df :: (V -> [V]) ->
forall a. (V -> a -> a) -> a -> [V] -> Vis a

df g c n vs = case vs of
[] -> return n
(x:xs) -> mem x >>=

(\b -> if b then df g c n xs
else sunion x >>=

(\z -> df g c n (g x ++ xs) >>=
(\ys -> return (c x ys))))

FIGURE 8.5. Depth-first graph traversal functions.

returns the list resulting from the traversal. At each iteration of the traversal,df

explores the current list of roots invs to find a vertex it has not reached before.
This is done by removing from the front ofvs all vertices for whichmem xis true
until either an unvisited vertex or the end ofvs is encountered. When an unvis-
ited vertexx is encountered,df addsx to the list of vertices visited, recursively
computes the depth-first traversals of the graphs rooted atx ’s children, as well as
those specified by the rest of the vertices invs , and then returns the list of vertices
obtained by addingx to the list of vertices recording the order in which the rest of
the vertices are traversed. The code for breath-first search is identical, except that
the functionbf corresponding todf usesxs ++ g x rather thang x ++ xs . To
traverse a particular graph we specify the desired traversal, the graph’s adjacency
list function, and its root vertices. For example, if the graphG is modeled byg 0

= [2,1] , g 1 = [] , andg x = [x+1] , thendepthFirst g [0] computes
the depth-first search ofG starting at root vertex0.

For example, to consume the result of a traversal withfiltergph odd where

filtergph :: (V -> Bool) -> [V] -> Vis [V]
filtergph p = foldr (\v i -> if p v then return (v : emp i)

else return (emp i))(return [])

we can write one of the following, depending on the desired traversal

dfFil g = emp (depthFirst g [0] >>= filtergph odd)

bfFil g = emp (breadthFirst g [0] >>= filtergph odd)

To perform the same computations without constructing the intermediate lists of
visit-dependent vertices, we can use thefold /msuperbuild rule to get

fn v i = if odd v then return (v : emp i)
else return (emp i)
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dfFil’ g = emp ((df g) fn (return []) [0] >>= id)

bfFil’ g = emp ((bf g) fn (return []) [0] >>= id)

Note that the lists obtained by taking any non-empty initial segments of the results
of dfFil g andbfFil g — and thus ofdfFil’ g andbfFil’ g — reflect the
distinction between the underlying depth-first and breadth-first traversals.

8.3 CORRECTNESS

8.3.1 Categorical Preliminaries

Let C be a category andF be an endofunctor onC . An F-algebrais a morphism
h : FA→ A in C . The objectA is called thecarrier of the F-algebra. TheF-
algebras for a functorF are the objects of a category called thecategory of F-
algebrasand denotedF-A lg. In the category ofF-algebras, a morphism from
h : F A→ A to g : F B→ B is a morphismf : A→ B such that the following
diagram commutes:

FA
F f //

h
��

FB

g

��
A

f // B

We call such a morphism anF-algebra morphism. If the category ofF-algebras
has an initial object then Lambek’s Lemma ensures that thisinitial F-algebra is an
isomorphism, and thus that its carrier is a fixed point ofF . Initiality ensures that
the carrier of the initialF-algebra is actually aleastfixed point ofF . If it exists,
the least fixed point forF is unique up to isomorphism. Henceforth we writeµF
for the least fixed point forF andin : F(µF)→ µF for the initialF-algebra.

Within the paradigm of initial algebra semantics, every datatype is the carrier
µF of the initial algebra of a suitable endofunctorF on a suitable categoryC . The
uniqueF-algebra morphism fromin to any otherF-algebrah : F A→ A is given
by the interpretationfold of the fold combinator for the interpretationµF of the
datatypeMu F. Thefold operator forµF thus makes the following commute:

F(µF)
F(foldh) //

in
��

FA

h

��
µF

foldh // A

From this diagram, we see thatfold has type(FA→ A)→ µF→ A and thatfold h
satisfiesfold h (in t) = h (F (fold h) t). The uniqueness of the mediating map
ensures that, for everyF-algebrah, the mapfoldh is defined uniquely.

As shown in [5], the carrier of the initial algebra of an endofunctorF on C
can be seen not only as the carrier of the initialF-algebra, but also as the limit of
the forgetful functorUF : F-A lg→ C mapping eachF-algebrah : F A→ A to A.
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If G : C → D is a functor, then aconeτ : D→ G to the baseG with vertexD is
an objectD of D and a family of morphismsτC : D→ GC, one for every object
C of C , such that for every arrowσ : A→ B in C , τB = Gσ ◦ τA holds.

GA
Gσ // GB

D

τA

OO

τB

<<yyyyyyyy

We usually refer to a cone simply by its family of morphisms, rather than the
pair comprising the vertex together with the family of morphisms. Alimit for
G : C →D is an object limG of D and a limiting coneν : lim G→G, i.e., a cone
ν : lim G→ G with the property that ifτ : D→ G is any cone, then there is a
unique morphismθ : D→ lim G such thatτC = νC ◦θ for all C∈ C .

GA
Fσ // GB

D

τA

OO
τB

;;xxxxxxxxx

θ

// lim G

νA

ccFFFFFFFF
νB

OO

The characterization ofµF as limUF provides a principled derivation of the
interpretationbuild of the build combinator forµF which complements the
derivation of itsfold operator from standard initial algebra semantics. It also
guarantees the correctness of the standardfold /build rules. Indeed, the univer-
sal property that the carrierµF of the initialF-algebra enjoys as limUF ensures:

• The projection from the limitµF to the carrier of eachF-algebra defines the
fold operator with type(FA→ A)→ µF → A.

• Given a coneθ : C→UF , the mediating morphism from it to the limiting cone
ν : limUF → UF defines a map fromC to limUF . Since a cone toUF with
vertexC has type∀x.(Fx→ x)→C→ x, this mediating morphism defines the
build operator with type(∀x.(Fx→ x)→C→ x)→C→ µF .

• The correctness of thefold /build fusion rule then follows from the fact that
fold afterbuild is a projection after a mediating morphism, and thus is equal
to the cone applied to the specific algebra. Diagrammatically, we have

A

C

gk
>>}}}}}}}}

buildg
// µF

foldk

OO



VIII–124 CHAPTER 8. SHORT CUT FUSION FOR EFFECTS

8.3.2 Correctness of thefold /superbuild Rule

To prove correctness of ourfold /superbuild rule we are actually interested in
the following variation of the preceding diagram:

H A

C

gk
<<xxxxxxxxx

superbuildg
// H (µF)

H(foldk)

OO

Here,superbuildis the interpretation inC of superbuild . If the functorH :
D → E preserves limits — i.e., if, for every functorG : C → D and every limit-
ing coneν : lim G→ G, the coneHν : H(lim G)→ H ◦G is also a limit, hence-
forth denoted lim(H ◦G) — then this is the diagram for the universal property of
lim (H ◦UF). We thus ask which functorsH preserve limits. It is well-known that
right adjoints preserve limits, but this is a more restrictive class of functors than
we would like. On the other hand,H needn’t preserveall limits, just limUF .

A connected categoryis a non-empty category whose underlying graph is con-
nected. Aconnected limitis a limit of a functor whose domain is a connected
category. The limit limUF : F-A lg→ C is a connected limit since the cate-
gory of F-algebras is connected (there is a morphism from the initialF-algebra
in : F (µF)→ µF to any otherF-algebra), so knowing that the functorH inter-
preting the type constructorh in the type ofsuperbuild preserves connected
limits is sufficient to ensure correctness of thefold /superbuild rule. It is well-
known that strictly positive functors preserve connected limits [3, 7]; in particular,
all polynomial functors preserve them. More generally, all functors created by
containers preserve connected limits [7]. The class of containers includes func-
tors, such as those whose least fixed points are nested types, which are not strictly
positive; the above proof thus covers many situations that are interesting in prac-
tice. To prove correctness of thefold /superbuild rule for functorsH which
do not preserve connected limits, it should be possible to give a formal argument
based on logical relations [1]. However, a proof based upon logical relations
would not cover examples such such as nested types which preserve connected
limits but are not definable in the underlying type theory of the logical relation.

8.3.3 Correctness of thefold /msuperbuild Rule

To see that thefold /msuperbuild rule is correct, we consider the diagram

M (MA) id∗ // MA

C

gk
<<yyyyyyyyy

msuperbuildg
// M (µF)

M(foldk)

OO

(foldk)∗

;;wwwwwwwww

whereM is the interpretation ofm in the type ofmsuperbuild , bind andreturn
are the interpretations of the>>= andreturn operations form, respectively, and



8.4. DUALITY VIII–125

f ∗ x = bindx f. Correctness of thefold /msuperbuild rule is exactly commu-
tativity of the diagram’s outer parallelogram. The diagram’s left-hand triangle
commutes because it is an instance of the previous diagram, and standard proper-
ties of monads ensure that its right-hand side commutes as well. Then

g k c>>= id = id∗ (g k c)
= (id∗ ◦g k)c
= ((fold k)∗ ◦msuperbuild g)c
= (fold k)∗(msuperbuild g c)
= msuperbuild g c>>= fold k

It is worth noting here that many monads that arise in applications — including
the exceptions monad, the state monad, and the list monad — preserve connected
limits. The continuations monad, however, does not.

8.4 DUALITY

Our fold /superbuild andfold /msuperbuild rules dualize to the coinductive
setting. Shortage of space prevents us from giving the corresponding constructs
and results in detail here, so we simply present their implementation. We have

unfold :: Functor f => (a -> f a) -> a -> Mu f
unfold k x = In (fmap (unfold k) (k x))

superdestroy :: (Functor f, Functor h) =>
(forall a. (a -> f a) -> h a -> c) -> h (Mu f) -> c

superdestroy g = g unIn

superdestroy g . fmap (unfold k) = g k

Whenc is Mu f , superdestroy returns anh-algebra which stores coalge-
braic f -data. Whenh is a comonad, i.e., an instance of theComonadclass

class Comonad cm where
coreturn :: cm a -> a
(=<<) :: cm b -> (cm b -> a) -> cm a

we have

cmsuperdestroy :: (Functor f, Comonad cm) =>
(forall a. (a -> f a) -> cm a -> c) -> cm (Mu f) -> c

cmsuperdestroy g = g unIn

cmsuperdestroy g (x =<< unfold k) = g k (x =<< id)

8.5 RELATED WORK

The work most closely related to ours is that of Pardo and his coauthors. Like this
paper, [14] also investigates conditions under which the composition of a function
producing an expression of typeM(µF) for M a monad andF a functor, and a
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function fold k of type µF → A can be fused to produce an expression of type
M A. But there are several crucial differences with our work. First, Pardo uses
unfold rather thanmsuperbuild to construct the intermediate expression. This
gives his fusion rule some additional logical generality over ours, sinceunfold

can construct elements of its associated functorf ’s final coalgebra which are not
in f ’s initial algebra, whereasmsuperbuild can construct only elements off ’s
initial algebra. But when the initial and final algebras of each functor coincide, as
in Haskell, this added logical generality yields no advantage in practice.

Secondly, Pardo’s monadic hylofusion (and hylofusion in general) is only
known to be correct in algebraically compact categories, i.e., categories in which
the initial algebra and final coalgebra for each functor coincide. By contrast,
our fold /superbuild rule is correct in any category supporting a parametric
interpretation offorall , and this condition is independent of any compactness
condition. The requirement that the interpreting category be algebraically com-
pact is unfortunate since it generates strictness conditions that must be satisfied,
and also requires the underlying monad to be strictness-preserving. This results
in strictness condition propagation. By contrast, neither ourfold /superbuild

nor ourfold /msuperbuild rules require the satisfaction of side conditions.
Thirdly, Pardo trades a composition of anunfold and a monadicfold for the

computation of an equivalent fixed point. By contrast, ourfold /msuperbuild

rule trades a bind of a call tomsuperbuild with a monadicfold for the bind of
the application of the function argument tomsuperbuild to thefold ’s algebra
with the identity function. Like all generalizations of thefold /build rule, our
fold /msuperbuild rule requires “payment up front” in that the producer in a
composition to be fused must be expressed in terms ofmsuperbuild . (This is not
very different from the price paid by expressing consumers in terms ofunfold ).
But our rule delivers a fused result which is simpler than that obtained using
Pardo’s technique. In particular, the functions obtained from our fusion rules
involve only binds of applications involving data structure “templates”, rather than
fixed point calculations. Their computation is thus guaranteed to terminate.

Finally, Pardo requires the existence of a distributivity law of the underlying
monad over the underlying functor to construct the lifting of functors to the Kleisli
category on which his monadic hylofusion rule depends. But distributivity laws
for arbitrary functors, even those admitting fixed points, need not exist.

Recently, Manzino and Pardo [11] have proposed a fusion rule similar to the
fold /msuperbuild rule given here. This rule seems to be interderivable with
ours in the presence of distributivity. Meijer and Jeuring [12] have also developed
fusion laws in the monadic setting, including a short cut fusion law for eliminating
intermediate structures of typeF A in a monadic contextM. Many fusion meth-
ods, including those of [12] and [14], eliminate data structures in the carriers of
initial algebras for only restricted classes of functors. By contrast, our method can
eliminate data structures ofany inductive type, and can handle non-monadic con-
texts as well. In addition, J̈urgensen [10] and Voigtländer [16] have each defined
fusion combinators based on the uniqueness of the map from a free monad to any
other monad. These techniques give very different forms of fusion from ours.
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8.6 CONCLUSION AND DIRECTIONS FOR FUTURE WORK

In this paper we defined asuperbuild combinator which generalizes the stan-
dardbuild combinator and expresses uniform production of functorial contexts
containing data of inductive types. We also proved correct afold /super build

fusion rule which generalizes thefold /build andfold /buildp rules from the
literature, and eliminates intermediate data structures of inductive types without
disturbing the contexts in which they are situated. An important special case arises
when this context is monadic. When it is, ourfold /msuperbuild rule fuses
combinations of producers and consumers via monad operations, rather than via
composition. We have given examples illustrating both thefold /superbuild

andfold /msuperbuild rules, and considered their coalgebraic duals as well.
The standardfold combinator can consume data structures in any context

describable by a functor, but the algebra it uses cannot depend on the context
in a non-trivial way. By contrast, context information can be used by algebras
to partially determine how thepfold combinator given in [2] will consume the
data structures, but unfortunately the contexts are limited to pairs. Interestingly,
the pfold /buildp rule given there for context-dependentfold s derives from
the fold /buildp rule from Figure 8.2 for standardfold s. As already noted, it
is the fold /buildp rule that ourfold /superbuild and fold /msuperbuild

rules generalize. One direction for future work is to generalize these rules even
further to accommodatebothcontext-dependent algebras and non-pair contexts.

Another direction for future work is suggested by considering an even more
monadic fusion rule based onfold - andbuild -like combinators which manip-
ulate algebra-like functions of typef a -> m a . Such a rule would produce in-
termediate data structures using “templates” based on so-called monadic algebras
and, in the presence of a distributivity ruledelta for mover f , would consume
data structures using them via a monadicmafold combinator. We’d have

mafold :: (Functor f, Monad m) =>
(f a -> m a) -> Mu f -> m a

mafold k = fold (\x -> fmap k (delta x) >>= id)

masuperbuild :: (Functor f, Monad m) =>
(forall a. (f a -> m a) -> c -> m a) -> c -> m (Mu f)

masuperbuild g = g (return . In)

masuperbuild c >>= mafold k = g k c

Although a datatype-genericmasuperbuild combinator is not defined in [12],
several instances of the above fusion rule are given. Yet no correctness proofs
for any of these specific instances — let alone any formulation of, or correctness
proof for, a datatype-generic fusion rule — are given. We believe an indepen-
dent proof of themafold /masuperbuild rule similar to those in Section 8.3 is
possible. Although it is not entirely clear how such a proof would go, a proof
for monads which preserve connected limits will likely require independent veri-
fication that lim(MUF,M) = M(µF) for the forgetful functorUF,M mapping each
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monadic algebrah : F a→M a to a, and a proof for monads which do not preserve
connected limits will likely be based on logical relations.

The facts thatmafold is defined in terms offold and thatmasuperbuild g

can be expressed asmsuperbuild (\k -> g (return . k)) together sug-
gest that themafold /masuperbuild rule might be derivable from (distributivity
and) thefold /msuperbuild rule. However, we believe the two rules to offer
distinct fusion options in the presence of distributivity; it would be interesting to
see which is more useful for programs that arise in practice.
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