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Abstract: Fusion is the process of improving the efficiency of modularly con-
structed programs by transforming them into monolithic equivalents. This paper
defines a generalization of the standaedd combinator which expresses uni-
form production of functorial contexts containing data of inductive types. It also
proves correct a fusion rule which generalizesftie /build andfold /buildp

rules from the literature, and eliminates intermediate data structures of inductive
types without disturbing the contexts in which they are situated. An important
special case arises when this context is monadic. When it is, a second rule for fus-
ing combinations of producers and consumers via monad operations, rather than
via composition, is also available. We give examples illustrating both rules, and
consider their coalgebraic duals as well.

8.1 GENERALIZING SHORT CUT FUSION

8.1.1 Introducing Short Cut Fusion

Fusion is the process of improving the efficiency of modularly constructed pro-
grams by transforming them into monolithic equivalents. Short cut fusion [6] is
concerned with eliminating list traversals from compositions of components that
are “glued” together via intermediate lists. Short cut fusion uses a local transfor-
mation — known as théoldr /build rule — to fuse computations which can
be written as compositions of applications of the uniform list-consuming function
foldr and the uniform list-producing functidsuild given by
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newtype Mu f = In {unin :: f (Mu f)}

fold :: Functor f => (f a -> a) -> Mu f -> a
fold h (In k) = h (fmap (fold h) k)

build :: Functor f =>
(forall a. fa->a) ->c->a) ->c -> Muf
build g = g In

fold k . build g = g k

FIGURE 8.1. Thefold andbuild combinators andfold /build rule.

foldr : (b ->a ->a) >a ->1[b] -> a
foldr cn[] =n
foldr ¢ n (x:xs) = ¢ x (foldr ¢ n xs)

build :: (forall a. (b -> a -> a) > a -> a) -> [b]
build g = g (1) [I

The functionfoldr is standard in the Haskell prelude. Intuitivetyidr c n

xs produces a value by replacing all occurrenceg)of in xs by ¢ and the occur-
rence off] inxs byn. Thus,sum xs = foldr (+) O xs sums the (numeric)
elements of the lisks. Uniform production of lists, on the other hand, is ac-
complished using the combinatasild , which takes as input a type-independent
template for constructing “abstract” lists and produces a corresponding “concrete”
list. Thus,build (\c n -> ¢ 4 (c 7 n)) produces the lige,7] . Uniform

list transformers can be written in terms of bédkir  andbuild . For example,

the functionmap can be implemented as

map :: (@ -> b) -> [a] -> [b]
map f xs = build (\c n -> foldr (c . f) n xs)

Thefoldr /build rule capitalizes on the uniform production and consump-
tion of lists to improve the performance of list-manipulating programs. It says

foldr ¢ n (build g) =g cn (8.1)

If sqr x = x * x , then this rule can be used, for example, to transform the
modular functiorsum . map sqgr ::  [Int] -> Int which produces an in-
termediate list into an optimized form which does not:

sum (map sqr xs) = foldr (+) O

(build (\c n -> foldr (c . sqgr) n xs))
(\c n -> foldr (c . sqr) n xs) (+) O
foldr ((+) . sqr) O xs

8.1.2 Short Cut Fusion for Inductive Types

Inductive datatypes are fixed points of functors. Functors can be implemented in
Haskell as type constructors supportingp functions as follows:
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buildp :: Functor f =>
(forall a. fa->a) >c->(az) >c-> (Muf 2)
buildp g = g In

fmap (fold k) . buildp g = g k

FIGURE 8.2. Thebuildp combinator andfold /buildp fusion rule.

class Functor f where
fmap : (@ -=>b) >fa->fb

The functionfmap is expected to satisfy the two semantic functor laws stating
thatfmap preserves identities and composition.It is well-known that analogues of
foldr exist for every inductive datatype. As shown in [4, 5], every inductive type
also has an associated generalizeitt combinator; the extra typein the type

of build is motivated in those papers and to lesser extent in Section 8.3 below.
These combinators can be implemented generically in Haskell as in Figure 8.1.
There,Mu f represents the least fixed point of the fundtoandin represents

the structure map fok, i.e., the “bundled” constructors for the datatyype f.
Thefold /build fusion rule for inductive types can be used to eliminate data
structures of typ&iu f from computations. Théoldr andbuild combinators

for lists can be recovered by takifigto be the functor whose fixed point[ig .
Thefoldr /build rule can be recovered by takirgto be the unit type as well.

As usualfold andbuild implement the isomorphisms between inductive types
and their Church encodings.

8.1.3 Short Cut Fusion in Context

Short cut fusion handles compositians f in which the data structure produced

by f is passed fronh to g. But what iff produces not just a single data structure,
but multiple such structures, embeds these data structures in a non-trivial context,
and passes the result gafor consumption of these data structures “in context"?

Is it possible to eliminate these intermediate data structures gramf while
keeping the context information, whighmay need to compute its result, intact?
Standard fusion techniques cannot achieve this: the intermediate data structures
produced byf cannot be decoupled from the context in which they are situated.
In [2], Fernandes et al. introduce a technique for fusing compositions in
whichf passes tg not only the intermediate data structure produced blut

an additional datum as well. Althougjrequires this datum to compute its result,

it is not used when processing the intermediate data structure, and so only the
data structure itself needs to be eliminated from f . To do this, [2] uses a
variant of the standaridld /build rule based on the combinatawildp , which
captures the extra datum by returning a data structure embedded in a pair context.
The datatype-genertwildp combinator and its associatéatd /buildp  fusion

rule are given in Figure 8.2. Thereap is the map function

fmap : (@ -> b) > (a,2) -> (b,2)
fmap f (a,z) = (f a, 2)
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superbuild :: (Functor f, Functor h) =>
(forall a. fa->a) ->c->ha)->c->h (Muf
superbuild g = g In

fmap (fold k) . (superbuild g) = g k

FIGURE 8.3. Thesuperbuild combinator andfold /superbuild  fusion rule.

which witnesses the fact that the type construatgiven byh x = (x,z) isa

functor. The context information produced byildp  and used by the consumer

in the left-hand side of thisld /buildp  fusion rule is reflected in the pair return

types ofbuildp  and its template argument, as well as in the mappinfpldf

across the pair in the associated /buildp rule. This rule eliminates interme-

diate data structures within the context of pairing with an additional datum.
But now suppose we want to write a function

gsplitWhen :: (b -> Bool) -> [b] -> [[b]]

which splits a list into sublists at every element that satisfies a givéNote that
the functiongsplitwhen  splits lists into arbitrary numbers of sublists, depend-
ing on the data they contain, and that the typim the type ofbuildp cannot
be instantiated to allow the return of a number of lists which has the potential to
change on each program run. This meansdhplitWhen cannot be written in
terms ofbuildp . Moreover, compositions afsplitWhen  with functions that
consume each of the individual “inner” lists produceddsplitwhen  but re-
quire the information inherent in its “context list” to compute their results cannot
be fused using théold /buildp rule. But why try to structure programs only
with contexts of the form(-,z) ? That is, why not consider a generalization
of thebuildp combinator, and a generalization of tioél /buildp fusion rule
which can be used to eliminate intermediate data structures, like those returned
by gsplitwhen , which appear in contexts other than just pairs? That is pre-
cisely what this paper does. We call these generalizatiopsrbuild  and the
fold /superbuild  rule, respectively. Likéuildp and thefold /buildp rule,
oursuperbuild  combinator andold /superbuild  fusion rule are available at
every inductive datatype. Datatype-generic versions are given in Figure 8.3; note
that the type of superbuild is actually generic in bétandh. The generaliza-
tion of the pair context in the type dliildp is captured by the replacement in
the type ofsuperbuild  of the type(x,z) by the typeh x for a more general
“context functor”h. This generalization is further reflected in the replacement of
thefmap function for pairs in théold /buildp rule by thefmap function for the
more general context functbrin thefold /superbuild  rule. Thefold com-
binator in thefold /superbuild  rule is the one foMu f, as usual. Thesenap
andfold functions are guaranteed to be defined precisely because the type of
superbuild  requires bothf andh to be functors. We argue in Section 8.3 that
thefold /superbuild  rule holds for a large class of functdrs

Takingh x = x gives the generalizebuild combinator andold /build
rule from Figure 8.1, while taking x = (x,z) gives thebuildp combina-



8.1. GENERALIZING SHORT CUT FUSION VIII-117

tor andfold / buildp rule from Figure 8.2. In general, tHeld /superbuild

rule can fuse compositions in which context information describable by non-pair
functors is passed, along with intermediate data structures, from producer to con-
sumer. Indeed, thield /superbuild rule eliminates intermediate structures of
typeMu f obtained by mapping a consumer expressedfalgl a over the data of
typeMu f stored in a context specified by a functorThus, setting = [b] , h

x = [x] ,andf to be the functor whose least fixed poinft$ , we can write

gsplitWhen p = superbuild go where
go ¢ n z = case z of
I -> ]
[w] > [c wn]
(W : ws) -> let xs = go cn ws
in if p w then (c w n) : xs
else (¢ w (head xs)) : (tail xs)

If Igh = foldr (\x > (1+)) O then using thdold /superbuild  rule to
fuse the compositioavLghs = map Igh . gsplitWhen even gives
evLghs’ z = case z of

f >

(W] > [1]

(w : ws) -> let xs = evLghs’ ws
in if even w then 1 : xs
else (head xs + 1) : (tail xs)

Note thatevLghs’ trades production and consumption of the list of intermediate
lists returned bygsplitWhen even inevLghs for production of the correspond-
ing list of values obtained by applyingh to each such list.

8.1.4 Short Cut Fusion in Effectful Contexts

The ability to fuse intermediate data structures in context turns out to be the
key to extending short cut fusion to the effectful setting. Although fusion in

the presence of computational effects has been studied by other researchers (see,
e.g., [10, 12, 14, 16]), short cut fusion in particular has not previously been for-
mally explored in this context. To perform short cut fusion in an effectful con-
text, the functional argument tuperbuild , and thussuperbuild  itself, must

have a monadic return type. Monads can be implemented in Haskell as type con-
structors supporting>= andreturn  operations as follows; these operations are
expected to satisfy the semantic monad laws.

class Monad m where
return :: a -> m a
(>>=) “ma->(@->mb) ->mb

If mis a monad, setting to min superbuild s type gives themsuperbuild
combinator in Figure 8.4. The accompanyiiotyl /msuper build  rule is the
natural “monadification” of théold /superbuild  rule; we give an example of
its use in Section 8.2. As we see in Section 8.3.3ftle /msuper build  rule
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msuperbuild :: (Functor f, Monad m) =>
(forall a. fa->a ->c->ma) ->c->m (Muf)
msuperbuild g = g In

msuperbuild g ¢ >>= fold k = g k ¢ >>=id

FIGURE 8.4. The msuperbuild combinator and fold /msuperbuild  fusion
rule.

follows from thefold /super build  rule and standard properties of monad mul-
tiplication. This rule does not eliminate the monadic context described byt

does eliminate intermediate data structures of ypef within that monadic con-

text. Moreover, although the rule does not change the type of the context contain-
ing the data structure, it can change the context itself, and so is more sophisticated
than its non-monadic counterpart.

The remainder of this paper is structured as follows. In Section 8.2 we ap-
ply our newfold /superbuild andfold /msuperbuild rules to substantive
examples. In Section 8.3 we show how thgerbuild  and msuperbuild
combinators are derived from initial algebra semantics, and prove the correct-
ness of their associated fusion rules. In Section 8.4 we give non-monadic and
monadicsuperdestroy  /unfold rules dual to our non-monadic and monadic
fold /super build  rules; our results fosuperbuild  and msuperbuild are
easily dualized to prove them correct. In Section 8.5 we discuss related work, and
in Section 8.6 we conclude and offer directions for future research. A Haskell im-
plementation of our results and an additional example highlighting the versatility
of our rules are available attp://www.cs.nott.ac.uk/ ~NXg .

8.2 EXAMPLES

In this section we give some more sophisticated examples showcasing the power
of thefold /superbuild  andfold /msuperbuild fusion rules. Our first ex-
ample shows that théold /superbuild  rule can be used to eliminate inter-
mediate data structures other than lists. Our second example shows that the
fold /msuperbuild rule can eliminate data structures within the state monad.

Example 8.1Consider the simple arithmetic expression datatype given by

data Opr = Add | Mul | Sub deriving (Eq, Show)

data Expr = Lit Int | Op Opr Expr Expr deriving (Eq, Show)

Thefold combinator for expressions, the instancesaferbuild ~ for expres-
sions where is Expr andh x is[x] , and the associated fusion rule are

foldExpr :: (Int -> a) -> (Opr -> a -> a -> a) -> Expr -> a
foldExpr | 0 e = case e of

Lit i > i

Op op el e2 -> o op (foldExpr | o el)
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(foldExpr | o e2)

superbuildExpr :: (forall a. (Int -> a) ->
(Opr -> a -> a -> a) -> Expr -> [a]) -> Expr -> [Expr]
superbuildExpr g = g Lit Op

map (foldExpr | o e) (superbuildExpr g) = g |l o e

If we defineopToHas Add = (+) , opToHas Mul = (*) , andopToHas
Sub = (-) , then we can implement an interpreter which traces the evaluation
steps taken in computing the integer values represented by expressions as

trace :: Expr -> [Expr]
trace = superbuildExpr g

g (nt->a) -> (Opr->a->a->a)-> Expr -> [a]
gl o e = case e of
Lit i -=> [l 1]
Op op el e2 -> let bl =
b2 = foldExpr | o e2
e’ 0 op bl b2
Lit k = last (g Lit Op el)
Lit j = last (g Lit Op e2)
bls =gl oel
b2s = g | o e2
in (e : (map (\x -> o op x b2)
(tail bls))
++ (map (o op (last bls))
(tail b2s))
++ [I (opToHas op k j)])

foldExpr | o el

For example, if

myexp = Op Mul (Op Add (Lit 5) (Lit 6))
(Op Sub (Lit 7) (Lit 4))

thentrace myexp generates the trace

[ Op Mul (Op Add (Lit 5) (Lit 6)) (Op Sub (Lit 7) (Lit 4)),
Op Mul (Lit 11) (Op Sub (Lit 7) (Lit 4)),
Op Mul (Lit 11) (Lit 3), Lit 33 ]

Once an interpreter trace is built, we can perform various analyses of it. For
example, we can measure the computational effort required to compute the value
represented by each expression arising in the evaluation of a given expression.
For this we useount , which counts 0 units of effort to compute a literal, 2 to
perform an addition, 3 to perform a subtraction, and 5 to perform a multiplication.

count Add x y = x +y + 2
count Sub x y = x +y + 3
count Mul x y = x +y + 5

We then have
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costExprs :: Expr -> [Int]
costExprs expr = map (foldExpr (\x -> 0) count)
(superbuildExpr g expr)

Thus costExprs myexp generates the resuyit0,8,50] . Fusion using the
fold /superbuild  rule givescostExprs’ g (\x -> 0) count — an equiv-
alent function in which no intermediate list of expressions is constructed.

Example 8.2Pardo [14] shows that graph traversal algorithms, such as depth-first
and breadth-first traversal, can be written as calls to a monaditi combi-
nator. We show that these algorithms can be written in ternmssaper build

The relationship between monadic and non-monadfold combinators, and
betweensuperbuild  andmsuperbuild , is discusssed in Section 8.5 below..

A graph traversal is represented as a function which takes as input a list of
root vertices of a graph and returns a list containing the vertices met in order as
the graph is traversed. We can represent the vertices of a graph by integers, and a
graph by an adjacency list function for vertices as follows:

type V = Int

type Graph = V -> [V]

In a graph traversal, each vertex is visited at most once. To avoid repeated visits
to vertices we can use the state monad [13, 15] to maintain a list of vertices visited
previously in the computation and thread this list through the traversal. We there-
fore define a datatype ofsit-dependent data@ach element of which is a function
taking a list of vertices already visited as input and returning a datum depending
on that list together with an updated list of visited vertices. We have

data State s a = State {runstate :: s -> (s,a)}

instance Monad (State s) where
return a = State (\s -> (s,a))
t >=f = State (\s -> let (s’,v) = runstate t s
in runstate (f v) s’)

type Vis a = State [V] a
Visit-dependent data support the following useful auxiliary functions:
data Unit = Unit

emp :: Vis a -=> a
emp xs = snd (runstate xs [])

sunion :: V -> Vis Unit
sunion v = State (\Wws -> (v:vs, Unit))

mem :: V -> Vis Bool
mem v = State (\vs -> (vs, elem v vs))

With this machinery we can define depth-first traversal as in Figure 8.5. There,
dft first allocates an empty list of visited vertices, then rd@sthFirst , yield-
ing a final list of visited vertices, and then de-allocates this visitation list and
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dft @2 (v -> [V])) -> [V] > [V]
dft g vs = emp (depthFirst g vs)

depthFirst = (V -> [V]) -> [V] -> Vis [V]
depthFirst g = msuperbuild (df g)

df = (V > [V]) ->
forall a. (V -> a ->a) > a -> [V] -> Vis a
df g ¢ n vs = case vs of
1] -> return n
(x:xs) -> mem x >>=
(\o -> if b then df g ¢ n xs
else sunion x >>=
(\z > df g c n (g x ++ xs) >>=
(\ys -> return (c x ys))))

FIGURE 8.5. Depth-first graph traversal functions.

returns the list resulting from the traversal. At each iteration of the traveifsal,
explores the current list of roots iz to find a vertex it has not reached before.
This is done by removing from the front of all vertices for whichmem xis true
until either an unvisited vertex or the endwf is encountered. When an unvis-
ited vertexx is encounteredjf addsx to the list of vertices visited, recursively
computes the depth-first traversals of the graphs rootet ghildren, as well as
those specified by the rest of the verticessn and then returns the list of vertices
obtained by adding to the list of vertices recording the order in which the rest of
the vertices are traversed. The code for breath-first search is identical, except that
the functionbf corresponding tdf usesxs ++ g x rathertham x ++ xs . To
traverse a particular graph we specify the desired traversal, the graph’s adjacency
list function, and its root vertices. For example, if the gré&pis modeled by 0
=[21 ,9g1=7] ,andg x = [x+1] , thendepthFirst g [0] computes
the depth-first search @ starting at root verteg.

For example, to consume the result of a traversal fiigngph odd where

fitergph :: (V -> Bool) -> [V] -> Vis [V]
filtergph p = foldr (\v i -> if p v then return (v : emp i)
else return (emp i))(return [])

we can write one of the following, depending on the desired traversal
dfFil g = emp (depthFirst g [0] >>= filtergph odd)
bfFil g = emp (breadthFirst g [0] >>= filtergph odd)

To perform the same computations without constructing the intermediate lists of
visit-dependent vertices, we can usefilé /msuperbuild  rule to get

fn v i = if odd v then return (v : emp i)
else return (emp i)
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dfFil g = emp ((df g) fn (return []) [0] >>= id)

bfFil' g = emp ((bf g) fn (return []) [0] >>= id)

Note that the lists obtained by taking any non-empty initial segments of the results
of dfFil g andbfFil g —andthusofifFi’ g andbfFil g —reflectthe
distinction between the underlying depth-first and breadth-first traversals.

8.3 CORRECTNESS

8.3.1 Categorical Preliminaries

Let ¢ be a category anfl be an endofunctor o#. An F-algebrais a morphism
h:FA— Ain ¥. The objectA is called thecarrier of the F-algebra. TheF-
algebras for a functofF are the objects of a category called tategory of F-
algebrasand denotedr-<71g. In the category of--algebras, a morphism from
h:FA— Atog:FB— Bis a morphismf : A— B such that the following
diagram commutes:

Ff
FA ——>FB

hlflg

A ——B

We call such a morphism dr-algebra morphismIf the category of-algebras
has an initial object then Lambek’s Lemma ensures thatrhial F-algebrais an
isomorphism, and thus that its carrier is a fixed poinEofinitiality ensures that
the carrier of the initiaF-algebra is actually geastfixed point ofF. If it exists,
the least fixed point foF is unique up to isomorphism. Henceforth we wiite
for the least fixed point foF andin : F(uF) — uF for the initial F-algebra.
Within the paradigm of initial algebra semantics, every datatype is the carrier
uF of the initial algebra of a suitable endofunctbpn a suitable categofy. The
uniqueF-algebra morphism frorn to any other~-algebrah: F A — Ais given
by the interpretatioffiold of thefold combinator for the interpretatiqmF of the
datatypeMu F. Thefold operator foruF thus makes the following commute:

F(fold h)

(UF) ——

inl lh
foldh

‘LLF4>

From this diagram, we see tHatd has typg FA— A) — uF — Aand thafold h
satisfiesfold h (int) = h (F (fold h) t). The uniqueness of the mediating map
ensures that, for eveify-algebrah, the magfold his defined uniquely.

As shown in [5], the carrier of the initial algebra of an endofundtoon ¢
can be seen not only as the carrier of the iniighlgebra, but also as the limit of
the forgetful functoty : F-7Ig — ¢ mapping eaclr-algebrah: FA — Ato A.
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If G: % — 2 is a functor, then @onert : D — G to the basés with vertexD is
an objectD of Z and a family of morphisms. : D — GC, one for every object
C of ¢, such that for every arrow : A— Bin &, 175 = Go o 7, holds.

We usually refer to a cone simply by its family of morphisms, rather than the
pair comprising the vertex together with the family of morphismslimait for
G:% — Zis an object linG of ¥ and a limiting conev : limG — G, i.e., a cone

v :lim G — G with the property that ift : D — G is any cone, then there is a
unique morphisn® : D — lim G such thatr. = vo6 forallC € 7.

GA—%-GB

LX)
A
The characterization giF as limUg provides a principled derivation of the
interpretationbuild of the build combinator foruF which complements the
derivation of itsfold operator from standard initial algebra semantics. It also
guarantees the correctness of the stanétdad /build rules. Indeed, the univer-
sal property that the carrigrF of the initial F-algebra enjoys as lit: ensures:

e The projection from the limitF to the carrier of eack-algebra defines the
fold operator with typgFA — A) — uF — A.

¢ Given a con® : C — U, the mediating morphism from it to the limiting cone
v :limUg — Up defines a map fron€ to limUg. Since a cone tdJg with
vertexC has typevx.(Fx — x) — C — X, this mediating morphism defines the
build operator with typ&Vvx. (FX — x) - C — x) — C — uF.

e The correctness of thfeld /build fusion rule then follows from the fact that
fold after build is a projection after a mediating morphism, and thus is equal
to the cone applied to the specific algebra. Diagrammatically, we have

A

k
V dek

c buildg uF
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8.3.2 Correctness of thdold /superbuild  Rule

To prove correctness of ofsld /superbuild  rule we are actually interested in
the following variation of the preceding diagram:
HA

TH(foId K)

c superbui‘ljéulz)

Here, superbuildis the interpretation ir¢” of superbuild . If the functorH :
2 — & preserves limits — i.e., if, for every funct@: ¢ — 2 and every limit-
ing conev : lim G — G, the coneHv : H(limG) — H o G is also a limit, hence-
forth denoted linfH o G) — then this is the diagram for the universal property of
lim (H oUg). We thus ask which functoid preserve limits. It is well-known that
right adjoints preserve limits, but this is a more restrictive class of functors than
we would like. On the other handl, needn’t preservall limits, just limUg.

A connected categolig a non-empty category whose underlying graph is con-
nected. Aconnected limiis a limit of a functor whose domain is a connected
category. The limit limJ; : F-27Ig — ¢ is a connected limit since the cate-
gory of F-algebras is connected (there is a morphism from the irfttalgebra
in: F(uF) — uF to any other-algebra), so knowing that the functdr inter-
preting the type constructdr in the type ofsuperbuild  preserves connected
limits is sufficient to ensure correctness of thie /superbuild  rule. It is well-
known that strictly positive functors preserve connected limits [3, 7]; in particular,
all polynomial functors preserve them. More generally, all functors created by
containers preserve connected limits [7]. The class of containers includes func-
tors, such as those whose least fixed points are nested types, which are not strictly
positive; the above proof thus covers many situations that are interesting in prac-
tice. To prove correctness of thi&d /superbuild  rule for functorsH which
do not preserve connected limits, it should be possible to give a formal argument
based on logical relations [1]. However, a proof based upon logical relations
would not cover examples such such as nested types which preserve connected
limits but are not definable in the underlying type theory of the logical relation.

8.3.3 Correctness of thdold /msuperbuild Rule

To see that théold /msuperbuild  rule is correct, we consider the diagram
M (MA) "9~ MA
(fold k)*

Cmsuperblﬂ\i{ldgl F)

whereM is the interpretation ofin the type ofmsuperbuild , bind andreturn
are the interpretations of the.= andreturn  operations fom respectively, and
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f*x = bindx f. Correctness of thénld /msuperbuild  rule is exactly commu-
tativity of the diagram’s outer parallelogram. The diagram'’s left-hand triangle
commutes because it is an instance of the previous diagram, and standard proper-
ties of monads ensure that its right-hand side commutes as well. Then

gkc>=id = id*(gko

= (id*ogk)c
((fold k)* o msuperbuild gc
= (fold K)*(msuperbuild g £
= msuperbuild g c>=fold k

It is worth noting here that many monads that arise in applications — including
the exceptions monad, the state monad, and the list monad — preserve connected
limits. The continuations monad, however, does not.

8.4 DUALITY

Ourfold /superbuild andfold /msuperbuild rules dualize to the coinductive
setting. Shortage of space prevents us from giving the corresponding constructs
and results in detail here, so we simply present their implementation. We have

unfold :: Functor f => (a -> fa) > a -> Mu f
unfold k x = In (fmap (unfold k) (k X))

superdestroy :: (Functor f, Functor h) =>
(forall a. (a > fa)->ha->c¢c)->hMuf ->c
superdestroy g = g unin

superdestroy g . fmap (unfold k) = g k

Whenc is Mu f, superdestroy  returns arh-algebra which stores coalge-
braicf -data. Wherh is a comonad, i.e., an instance of tbemonad class

class Comonad cm where
coreturn . cm a -> a
(=<<) s cmb->(cmb->a) ->cma

we have

cmsuperdestroy :: (Functor f, Comonad cm) =>
(forall a. (a > fa) ->cma->c¢)->cm (Muf) ->c
cmsuperdestroy g = g unin

cmsuperdestroy g (x =<< unfold k) = g k (x =<< id)

8.5 RELATED WORK

The work most closely related to ours is that of Pardo and his coauthors. Like this
paper, [14] also investigates conditions under which the composition of a function
producing an expression of typé(uF) for M a monad andr a functor, and a
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function fold k of type uF — A can be fused to produce an expression of type
MA. But there are several crucial differences with our work. First, Pardo uses
unfold rather tharmsuperbuild  to construct the intermediate expression. This
gives his fusion rule some additional logical generality over ours, sinfugd

can construct elements of its associated func®final coalgebra which are not

in f’s initial algebra, whereamsuperbuild can construct only elements bk

initial algebra. But when the initial and final algebras of each functor coincide, as
in Haskell, this added logical generality yields no advantage in practice.

Secondly, Pardo’s monadic hylofusion (and hylofusion in general) is only
known to be correct in algebraically compact categories, i.e., categories in which
the initial algebra and final coalgebra for each functor coincide. By contrast,
our fold /superbuild  rule is correct in any category supporting a parametric
interpretation oforall , and this condition is independent of any compactness
condition. The requirement that the interpreting category be algebraically com-
pact is unfortunate since it generates strictness conditions that must be satisfied,
and also requires the underlying monad to be strictness-preserving. This results
in strictness condition propagation. By contrast, neitherfoldr /superbuild
nor ourfold /msuperbuild  rules require the satisfaction of side conditions.

Thirdly, Pardo trades a composition of emfold and a monadiéold for the

computation of an equivalent fixed point. By contrast, faltt /msuperbuild
rule trades a bind of a call tasuperbuild  with a monadidold for the bind of
the application of the function argumentriwuperbuild  to thefold ’s algebra
with the identity function. Like all generalizations of tifed /build rule, our
fold /msuperbuild  rule requires “payment up front” in that the producer in a
composition to be fused must be expressed in termsoferbuild . (This is not
very different from the price paid by expressing consumers in termsfold ).
But our rule delivers a fused result which is simpler than that obtained using
Pardo’s technique. In particular, the functions obtained from our fusion rules
involve only binds of applications involving data structure “templates”, rather than
fixed point calculations. Their computation is thus guaranteed to terminate.

Finally, Pardo requires the existence of a distributivity law of the underlying
monad over the underlying functor to construct the lifting of functors to the Kleisli
category on which his monadic hylofusion rule depends. But distributivity laws
for arbitrary functors, even those admitting fixed points, need not exist.

Recently, Manzino and Pardo [11] have proposed a fusion rule similar to the
fold /msuperbuild  rule given here. This rule seems to be interderivable with
ours in the presence of distributivity. Meijer and Jeuring [12] have also developed
fusion laws in the monadic setting, including a short cut fusion law for eliminating
intermediate structures of tygeA in a monadic contextl. Many fusion meth-
ods, including those of [12] and [14], eliminate data structures in the carriers of
initial algebras for only restricted classes of functors. By contrast, our method can
eliminate data structures ahyinductive type, and can handle non-monadic con-
texts as well. In addition,ifgensen [10] and Voigihder [16] have each defined
fusion combinators based on the uniqueness of the map from a free monad to any
other monad. These techniques give very different forms of fusion from ours.
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8.6 CONCLUSION AND DIRECTIONS FOR FUTURE WORK

In this paper we defined superbuild ~ combinator which generalizes the stan-
dardbuild combinator and expresses uniform production of functorial contexts
containing data of inductive types. We also proved corrédalda /super build

fusion rule which generalizes thield /build andfold /buildp rules from the
literature, and eliminates intermediate data structures of inductive types without
disturbing the contexts in which they are situated. An important special case arises
when this context is monadic. When it is, diold /msuperbuild  rule fuses
combinations of producers and consumers via monad operations, rather than via
composition. We have given examples illustrating bothftieé /superbuild

andfold /msuperbuild rules, and considered their coalgebraic duals as well.

The standardold combinator can consume data structures in any context
describable by a functor, but the algebra it uses cannot depend on the context
in a non-trivial way. By contrast, context information can be used by algebras
to partially determine how thpfold combinator given in [2] will consume the
data structures, but unfortunately the contexts are limited to pairs. Interestingly,
the pfold /buildp rule given there for context-dependeald s derives from
thefold /buildp rule from Figure 8.2 for standarfdild s. As already noted, it
is thefold /buildp rule that ourfold /superbuild  andfold /msuperbuild
rules generalize. One direction for future work is to generalize these rules even
further to accommodateoth context-dependent algebras and non-pair contexts.

Another direction for future work is suggested by considering an even more
monadic fusion rule based dold - andbuild -like combinators which manip-
ulate algebra-like functions of tygea -> m a . Such a rule would produce in-
termediate data structures using “templates” based on so-called monadic algebras
and, in the presence of a distributivity ruleita for moverf , would consume
data structures using them via a monadifold combinator. We'd have

mafold :: (Functor f, Monad m) =>
fa->ma > Muf->ma
mafold k = fold (\x -> fmap k (delta x) >>= id)

masuperbuild :: (Functor f, Monad m) =>
(forall a. fa->ma) >c->ma) ->c->m (Muf
masuperbuild g = g (return . In)

masuperbuild ¢ >>= mafold k = g k ¢

Although a datatype-generinasuperbuild  combinator is not defined in [12],
several instances of the above fusion rule are given. Yet no correctness proofs
for any of these specific instances — let alone any formulation of, or correctness
proof for, a datatype-generic fusion rule — are given. We believe an indepen-
dent proof of themafold /masuperbuild  rule similar to those in Section 8.3 is
possible. Although it is not entirely clear how such a proof would go, a proof
for monads which preserve connected limits will likely require independent veri-
fication that limMUg. ;) = M(uF) for the forgetful functotJg. , mapping each
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monadic algebra: Fa— Mato a, and a proof for monads which do not preserve
connected limits will likely be based on logical relations.

The facts thamafold is defined in terms dbld and thaimasuperbuild g
can be expressed assuperbuild (\k -> g (return . k)) together sug-
gest that thenafold /masuperbuild  rule might be derivable from (distributivity
and) thefold /msuperbuild  rule. However, we believe the two rules to offer
distinct fusion options in the presence of distributivity; it would be interesting to
see which is more useful for programs that arise in practice.
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