A Combinatory Logic Approach to Higher-order
E-unification *

Daniel J. Dougherty
Department of Mathematics
Wesleyan University

Middletown, CT 06457 USA
ddougherty@eagle. wesleyan. edu

Patricia Johann
Department of Mathematics and Computer Science

Hobart and William Smith Colleges

Geneva, NY 14456 USA
johann@hws.bitnet

Abstract

Let E be a first-order equational theory. A translation of typed higher-order
FE-unification problems into a typed combinatory logic framework is presented and
justified. The case in which E admits presentation as a convergent term rewriting
system is treated in detail: in this situation, a modification of ordinary narrowing
is shown to be a complete method for enumerating higher-order FE-unifiers. In
fact, we treat a more general problem, in which the types of terms contain type
variables.

1 Introduction

Investigation of the interaction between first-order and higher-order equational reasoning
has emerged as an active line of research. The collective import of a recent series
of papers, originating with [Bre88] and including (among others) [Bar90], [BG91a],
[BGI1b], [Dou92], [JO91] and [Oka89], is that when various typed A-calculi are enriched
by first-order equational theories, the validity problem is well-behaved, and furthermore
that the respective computational approaches to verifying equations (3-reduction and
term rewriting) interact in a “modular” fashion.

This paper is concerned with the satisfiability problem in such a combined system,
that is, with higher-order E-unification. The main novelty in our approach lies in the
use of typed combinatory logic (CL) rather than typed A-calculus (£C) as a formalization
of higher-order logic. The claim herein is that, as an algebraic treatment of higher-order

*This paper is part of the second author’s dissertation for the Ph.D. at Wesleyan University in 1991,
under the direction of Daniel J. Dougherty; it was presented at the Eleventh International Conference
on Automated Deduction in Saratoga Springs, NY, June 1992 and an extended abstract appears in the
proceedings of that conference.

reasoning, CL provides a congenial setting for incorporating first-order unification into
the higher-order problem, eliminating the complexities (both conceptual and practical)
involved with the presence of bound variables.

We provide evidence for this claim by analyzing the situation in which the equational
theory F admits a presentation as a convergent (confluent and terminating) term
rewriting system. We develop the completeness of an algorithm which is essentially
a normalized narrowing algorithm described in terms of transformations on systems,
and which enumerates a complete set of higher-order E-unifiers for any system of terms.
Future work will explore a combinatory approach to preunification and will address
specific equational theories such as associativity and commutativity.

Any of the standard effective translations between L£C and CL facilitate a natural
approach to solving higher-order unification problems. A solution strategy might
attempt to unify in CL the translations of the LC-terms specifying a higher-order
unification problem, rather than performing the unifications in £C. Since the basic
axioms for CL admit presentation as a convergent reduction relation, and so support
narrowing as a unification procedure, this program is particularly appealing. Encouraged
by the well-known techniques for combining unification algorithms for first-order theories
([Sch89], [Bou90]), we can hope for a modular solution to the problem of combining the
first-order and higher-order problems.

But the reader familiar with combinatory logic will immediately recognize a difficulty:
even when F is empty, the equality generated by the basic CL-equations is not that
induced by the translation from £C to CL. Furthermore, no convergent term rewriting
system 1s known for this induced equality.

This difficulty is solved here — generalizing the techniques of [Dou93] — by defining
a certain notion of reduction on systems of CL-terms. When E has a convergent
presentation, this reduction captures the induced equality described above and supports
the syntactic unification strategy of narrowing (and so yields a solution to the unification
problem in its usual formalization). The situation turns out to be particularly pleasant
when the term rewriting system underlying E' is left-linear.

Classical higher-order unification concerns unification of terms of the explicitly simply
typed A-calculus; here we treat a more general problem in which the types of terms
contain type variables which are eligible for instantiation by our answer substitutions.

Compiling functional programs into combinators has become a standard technique,
motivated by the inefficiencies inherent in instantiating terms in the presence of bound
variables (see [Pey87] for a discussion); implementations of higher-order unification
problems should enjoy similar benefit from the passage to combinators.

Moreover, reasoning about and implementing substitution is simpler in an algebraic
setting than in the traditional framework, and the use of combinators spares us the
usual manipulation of long n-normal forms of £LC-terms. There is more than notational
simplicity at stake: as pointed out by Snyder ([Sny90]), the presence of bound variables
during paramodulation steps causes significant technical complications.

The incorporation of type-variables represents a significant generalization of the
classical problem and yet presents no difficulties for the approach described here, since
our algorithm is driven by the shapes of the terms (as usual in algebraic unification)
rather than by the shape of the types. Huet’s classical algorithm, by contrast, requires
that the types of terms are completely specified (see the discussions in [Nip90] and
especially [Dou92]).

Finally, the use of type-variables allows a finite axiomatization of typed combinatory
logic, which in turn supports a complete unification procedure with a finitely branching
search space.

Applications of pure higher-order unification in automated deduction are varied and
plentiful: higher-order logic, specification of higher-order logics, machine learning, type
inference in polymorphic lambda calculus, and extensions of logic programming are but
some areas employing higher-order unification methods. Unification in the presence of
a first-order equational theory E has been surveyed in [Sie89] and [JK91]; the use of
narrowing as an algebraic unification procedure originates with Fay ([Fay79]).

The seminal work in higher-order unification is [Hue75]; Gallier and Snyder ([GS89b])
have presented Huet’s algorithm in a transformational setting. Snyder ([Sny90])
has given transformations for higher-order unification in the presence of an arbitrary
equational theory F; Nipkow and Qian ([NQ91]) refined these to allow a modular
approach (to pre-unification as well as unification) when a unification algorithm for
E is known. The methods in [NQ91] are complete when E satisfies certain (strong)
constraints.

Unification in the presence of type variables has applications in program transforma-
tion ([PE88], [El190]) and higher-order logic programming ([EP89]), and would be useful
in theorem proving in higher-order logic (see [NPS?7?] for a more complete discussion).
Other attempts to extend classical higher-order unification to allow more flexible typing
schemes include treatment of A-calculi with type-variables in [Nip90] and [Hus??], and
the presentation of an algorithm for unification in the presence of dependent function
types in [ElI89]. Nipkow’s algorithm has been incorporated into the generic theorem
prover Isabelle, and Elliott’s is designed as the basis for a generalization of the pro-
gramming language A-Prolog. All of these algorithms are based on Huet’s method; only
Hustadt’s is a complete unification procedure.

Preliminaries

We will often draw upon classical results about the lambda calculus and combinatory
logic (see, for example [HS86]) and use the basic results on the combination of lambda
calculus and first-order rewriting ([Bre88], [BG91a], [BG91b], [Dou92]). We will assume
familiarity with the use of transformations on systems to study unification ([MM82],
[GS89a]). For definitions and notations here not given explicitly, the reader is referred
to [DJ90].

Fix a set of equations F.

Terms and equalities

The types are formed by closing a set of base types and type-variables under the operation
(a1 = a3) for types a; and ay. Base types and type-variables are called atomic types.

It will be convenient to arrange that distinct term-variables do not become identical
by virtue of a type-substitution; we therefore require a precise notion of type-erasure
for term-variables. Fix an infinite well-ordered set of indeterminates and an infinite
well-ordered set of parameters. A term-variable is an ordered pair consisting of an
indeterminate and a type; a constant is an ordered pair consisting of a parameter and
a type; an atom is either a term-variable or a constant. The type-erasure of an atom is

the first element of the pair. Note that distinct atoms are not required to have distinct
type-erasures, although we will assume, for convenience, that distinct atoms in F do.

We will denote by X the set of all constants whose types are of the form
a; — az — ... = ag, where &k > 0 and «; is a base type for i = 1,...,k. When
discussing combinatory logic we assume that the parameters include the symbols 7, K,
and S (although it is possible to postulate only K and S| for technical reasons we will
need to have T as a primitive parameter). In the course of testing equality or unifiability
of terms we will find i1t convenient to introduce constants not occurring in any terms
under consideration; we therefore assume that the set of parameters has a distinguished
infinite set Args disjoint from {7, K, S} and the type erasures of all symbols in E.

LC 1s the set of explicitly simply typed lambda terms over the atoms excluding 7,
K, and S; CL is the set of explicitly simply typed combinatory logic terms over these
atoms together with the various 7, K, and S typed as usual (the typed 7, K, and S
are called redez atoms). The support of a term T, Supp(T), is the set of type-variables
occurring in 7' together with the indeterminates occurring among the type-erasures of
the atoms in T'; a pure term is a term in which no constant occurs whose erasure is in
Args. A fresh indeterminate or parameter is one not occurring in any term currently
under consideration; we will often refer to a choice of a term T with fresh variables,
by which we mean that Supp(T) is disjoint from all type-variables and indeterminates
currently under consideration.

Syntactic equality between terms or types is denoted by =. We will not explicitly
indicate the types of terms unless it is necessary.

If T = hTy.. T, is a term and h i1s an atom, then h is called the head of T if
furthermore A € X, then T is said to be a X-term. An algebraic term is either a variable
of base type or a term of the form h77...7;,, where h € ¥ and each term 7; is algebraic.

Each term T can be identified with a labeled binary tree, and when this is done, the
set of 0-1 sequences indexing its symbols is called the set of occurrences of T' and denoted
O(T). As usual, we write T'/u for the subterm of T determined by the occurrence wu,
and T'[u < U] for the term obtained by replacing T'//u by U. Write Vars(T) for the set
of variables which are T'/u for some u € O(T).

On CL, weak equality is generated by weak reduction, determined by the rules
Iz — 2, Key— =z, and Szyz —> zz(yz); given a term rewriting system R, wR-
reduction and pnR-reduction are the reduction relations generated by R together with
the rules for weak reduction or fn-reduction, respectively. Weak reduction and gn-
reduction are both convergent on typed terms, and so we may speak of the weak normal
form of a CL-term and the @Gn-normal form of a LC-term. The long f-normal form of
a LC-term is obtained in the usual way. If R is convergent, then so are wR and gn~'R
([Bre88], [BG91a], [BGI1b]); we therefore similarly refer to the wR-normal form or long
B R-normal form of a CL- or LC-term as appropriate.

Fix any of the standard A : CL — £C and H : LC — CL such that A(H(M)) =g, M.
Given a first-order equational theory FE, define extensional combinatory E-equality
by X =crg Y iff A(X) =gy,r A(Y); it follows that for any LC-terms M and N,
M =gyr N it H(M) =cg H(N).

Substitutions and unification

A type-substitution is an ordinary algebraic substitution over the algebra of types; a type-
substitution #; induces a mapping on terms in an obvious way, and we shall denote this

map by fy as well. A term-substitution 6, is an ordinary (type-preserving) substitution
on LC- or CL-terms, as appropriate. A substitution 6 is a pair consisting of a type-
substitution #y and a term-substitution f;; such a pair induces a mapping on £C and on
CL, also denoted 6, by the rule 0T = 0, (0oT) (application of a substitution to a term,
as well as composition of substitutions, will be indicated by juxtaposition). A pure
substitution is one whose range is a set of pure terms. It will be notationally convenient
to allow a term-substitution #; to act as the identity on types, so that we may refer to
fa when a 1s a type.

Our dual substitutions behave in most ways just as ordinary substitutions. A
substitution 6 is idempotent iff both 8y and #; are idempotent, for example, and if
two (LC- or CL-) terms are syntactically unifiable they possess a most general unifier,
or mgu. Details are worked out in [Dou93].

An instance of the higher-order E-unification problem is a two-element multiset
(M, N) of LC-terms; a solution is a substitution 6 such that 6M =g, g 6N.

Suppose W is a set of type-variables and indeterminates. Whenever =, is a notion
of equality on terms the notation § =, §'[W] means that

1. for every type-variable t € W, fy(t) = 6;(¢), and
2. for every term-variable z whose type-erasure is in W, 8 (z) =. 0} (z).

A notion of equality =, on terms induces an order <, on substitutions defined by:
6 <. @'[W)] if there is a substitution pu with u =, 6'[W].

The transfer to combinatory logic

If 6 is an LC-substitution, let the CL-substitution (# o) be defined by (H 0 6)X =
(H 0 01)(6X); if 6 is a CL-substitution, define (A o §) analogously. The justification
for our strategy of translating the unification problem from L£C to CL is embodied in
the following lemma, adapted from [Dou93], which follows from the facts that for any
LC-term M and substitution 8§, H(0M) = (H o O)H(M), and for any CL-term X and
substitution 0, A(0X) = (A o)A(X).

Lemma 1.1 Let M and N be LC-terms. The fnE-unifiers of M and N are (up
to pointwise (n-conversion) those of the form (A o 6), where 6 ranges over the CL-
substitutions such that OH(M) =cp 0H(N).

If we define extensional combinatory E-unification as the problem of unifying CL-
terms with respect to extensional combinatory E-equality, the above discussion shows
how a method for extensional combinatory E-unification yields a method for higher-
order F-unification as originally presented.

The rest of this paper will be concerned with extensional combinatory E-equality,
henceforth C'E-equality, and extensional combinatory FE-unification, henceforth C'E-
unification. The unqualified word “term” will mean “combinatory logic term”.

When E is presented by a term rewriting system R we will often abuse notation
by writing, e.g., X =¢r Y for X =¢g Y, or by referring to “C'R-validity” instead of
“C'E-validity.” When E is empty we will refer to “C-validity” and “C-equality,” and
write X =¢ Y.

Systems

A pair is either a term-pair or a type-pair, where a term-pair is a two-element multiset
of CL-terms and a type-pair is a two-element multiset of types. A pair is trivial if its
elements are identical, and C E-valid if its elements are C E-equal (it will be convenient
to consider trivial type-pairs to be C E-valid).

A system is a set of pairs in which no two distinct atoms have the same type-erasure;
this of course implies that no two distinct terms appearing as subterms of terms in a
system have the same type-erasure. A system is trivial if each of its pairs is trivial,
and C'E-valid if each of its pairs is C'E-valid. If the symmetric difference between the
systems T’ and I’ (i.e., the set of pairs occurring in exactly one of T and I") is trivial,
we write T = T”. As is customary, we use T', (X,Y) to abbreviate T' U {(X,Y) }. Since
this is ambiguous as a decomposition of the system in question (I' may or may not
contain (X,Y)), we introduce the notation I'; {(X,Y) to refer to TU{(X,Y) } with the
understanding that (X,Y) is not a pair in T.

A consequence of the fact that terms are explicitly typed (rather than typable under
a type-inference system) is that a pair will not be C'E-valid unless its terms have the
same type; this restriction is not built into the definition of system since terms with
different types may still be unifiable. Type-pairs will play no role until Section 4.

A substitution 8 is a unifier of a system T if T (obtained by applying to each type
and term occurring in T') is trivial. A substitution 6 is a C'E-unifier of a system T if T
is C'E-valid. When E is empty or admits presentation as a term rewriting system, we
refer to “C-unifiers” or “C'R-unifiers,” respectively.

The restriction on type-erasures of the atoms in a system is designed to avoid the
technical complications which would result if distinct variables could become identical
after a type-substitution, and to avoid unneccessary identification of other terms in
systems via substitution application as well.

Note that if T' is a unification problem presented as a set of pairs in which some
indeterminates appear with more than one type, then successive applications of syntactic
unification on the types assigned to these indeterminates will result in a system with
the same C E-unifiers.

Let T be a system. If (¢,) is a type-pair in T' and there are no occurrences (in type-
or term-pairs) of ¢ in T other than the one indicated, then ¢ is solved in T and (¢, a)
is a solved type-pair. If (x, X) is a term-pair in T, z and X have the same type, and
there are no occurrences of z in I' other than the one indicated, then x is solved in T’
and (z,X) is a solved term-pair.

If each non-trivial term- or type-pair in I is solved, then T is a solved system, and its
pairs determine an idempotent substitution in the usual way, although a pair consisting
of two solved variables requires a choice as to which is in the domain of the substitution.
Conversely, any idempotent substitution can be represented as a solved system; if 8 is
an idempotent substitution, write [§] for any solved system which represents it.

2 The Validity Problem

In this section, we give the transformations for C'R-validity which will comprise the main
analytical tool in investigating the completeness properties of our unification algorithm.

2.1 Transformations for C-validity

It will be helpful to have a brief discussion of the combinator-based approach to simple
higher-order unification (without first-order equations).

Certainly C-equality is decidable; we may simply pass to £C and use (convergent) 3n-
reduction to test for equality of terms there. We might hope for a corresponding rewrite
relation defined directly over CL-terms, since narrowing is a well-understood unification
technique for equational theories admitting a convergent presentation. Unfortunately
no such relation is known (the classical strong reduction relation in CL, which does
capture C-equality, 1s clearly not suitable as foundation for unification — it is not
finitely axiomatizable, and indeed even recognizing the set of rules is non-trivial).

However, there is defined in [Dou93] a well-behaved notion of reduction on systems
which decides C-equality. C-equality can be obtained from weak equality by the addition
of the extensionality rule:

Infer X =¢ Y from Xz =¢ Yz, when z is not free in X or in Y.

Using this rule, deciding C-equality reduces to deciding C-equality between atomic-type
terms. The weak normal form of any atomic-type term has a non-redex atom at the
head. But two terms hX;--- X and A'Y; - Yy are C-equal iff h = A', k = k', and
X; =¢ Y, for each ¢. This motivates the following set of transformations.

Definition 2.1 The set VT consists of the following three transformations:

o WEAK REDUCE
T (X,Y) — T, (X,Y),

when X weakly reduces to X"'.

e ADD ARGUMENT
T (X,Y) — T, (Xd, Yd),

when X and Y have the same type, at least one of X and Y is of one of the forms:
I, K, KA S, SA, or SAB, and d is built from the first parameter in Args not
occurring in (X,Y), and given the appropriate type.

e DECOMPOSE
F1 <hX1 "'Xkahyl Yk> _>Fa <X11Y1>1'~'1 <XkaYk>a
when h is a non-redex atom and k > 1.

Here and elsewhere, we will observe the convention that no transformation is to be
applied to a trivial pair. Observe the use of “;” on the left-hand sides of transformations,
so that the effect of the transformation is unambiguous, and the use of “” on the right-
hand sides, to preclude repetition of identical pairs.

The notation for WEAK REDUCE exploits the fact that pairs are unordered; we intend
of course that either element of a pair may be reduced. A similar remark applies in
several places below. The use, in ADD ARGUMENT, of new constants rather than new
variables will serve to remind us in unification that the new arguments are not part of
the original term and should not be instantiated. The necessity for the restriction on d in
ADD ARGUMENT may be seen by considering the non-C-valid pair (Kd, I) , which can be
reduced by an improper application of ADD ARGUMENT to the C-valid pair (Kdd, Id) .

It is tempting to think of VT as a term rewriting system, but the analogy is not
perfect, since ADD ARGUMENT can only be applied at the heads of terms (it changes
their types) and a system admitting a DECOMPOSE step need no longer do so after
instantiation (consider the case when a redex atom is substituted for a head variable).
Fortunately, the facts that term rewriting systems are closed under context application
and stable under substitution are not necessary for supporting a unification procedure,
as will be demonstrated in the remainder of this paper.

The key facts about VT (proved in [Dou93]) are the following:

Theorem 2.2 Let T be any system.
1. (Soundness) Suppose T —T'. Then T is C-valid if T' is C-valid.

2. (Sufficiency) Suppose T is VT-irreducible. Then T is C-valid iff it is trivial.
3. (Termination) Fvery sequence of VT-steps terminates.

Here, in the absence of algebraic equations, part (1) of Theorem 2.2 can be
strengthened to read “if and only if”. Thus, a simple algorithm for deciding C-
equality between terms X and Y can apply VT transformations in any order to the
system originally comprising (X,Y). Since every sequence of VT-steps terminates,
an irreducible system will be obtained; X =¢ Y iff this system is trivial. The VT
transformations can in fact be restricted to head applications; of course, we may halt
and report non-equality if ever we generate a pair of terms whose heads are different
non-redex atoms.

The combinator-based higher-order unification method can be characterized simply
as the notion of narrowing on systems induced by VT as a reduction relation;
Theorem 2.2 1s the foundation of the completeness proof.

2.2 Transformations for C R-validity

In the move to higher-order E-unification, the difficult step is that of constructing a set
of transformations analogous to VT which capture C' E-validity. The rest of this section
is devoted to such a construction.

We must first understand how first-order equality, especially when presented in terms
of a term rewriting system R, interacts with C-equality. Known results concerning
rewriting and the A-calculus are encouraging, but do not apply directly. If R is
terminating, termination of w R-reduction follows from termination of 3 R-reduction, but
of course wR-reduction will not capture C R-equality. Furthermore, we are committed
to unification relative to extensional combinatory equality, and yet R-reduction and 7-
reduction will not be jointly confluent in general — for example, if R consists of the single
rule fo —> a, then Az.fz np-reduces to f and R-reduces to Az.a. The ADD ARGUMENT
transformation on systems can be thought of as a way of “recovering” confluence.

We begin our investigation of C'R-validity by considering the following set RVT of
transformations obtained from VT by naively incorporating R-reduction.

Definition 2.3 Let R be a first-order term rewriting system.
1. The transformation R-REDUCE is defined by
(X)) —T,(X"Y),

where X — X’ is an instance of R-reduction.

2. The set RVT consists of R-REDUCE and the transformations from VT, with the
proviso that DECOMPOSE may be applied only to a pair of terms which are wR-
irreducible.

The restriction on DECOMPOSE will prevent the perhaps unsound step of decomposing
an actual or potential head wR-redex.
We might hope for an analogue of Theorem 2.2, but unfortunately, sufficiency can

fail:

Example 2.4 Let R be the rule fzz —> a and T be the system (f(z(SK))(z(K1)),a),
where z is a variable taking terms of the appropriate functional type to base type terms.
Then T is non-trivial and C'R-valid (since SK =¢ K1) and yet allows no application of
a rule from RVT.

On the other hand, the existence of repeated variables in the rewrite rule is the only

difficulty:

Theorem 2.5 Let R be convergent and left-linear. Then the results of Theorem 2.2
hold for RV'T reduction and C R-validity.

Proof. This is a special case of the main result of this section, Theorem 2.10 below. o

An important consequence of Theorem 2.5 will be that when R is left-linear, naively
adding R-narrowing to the higher-order narrowing transformations induced by VT
allows enumeration of all C'R-unifiers.

The difficulty in Example 2.4 is that the terms in the “potential R-redex”
corresponding to the two occurrences of z in fzz — a are not at the “top level,” and
so cannot be determined C'R-equal using RVT. That this obstacle can be overcome by
“pre-processing” the pair (2(SK),z(KI)) suggests incorporating arbitrary convergent
R into our computational paradigm by making such subterms of potential R-redexes
immediately accessible. A formalism suitable for this task is that of conditional rewriting
systems. This proof-theoretic tool has found use in demonstrating syntactic properties
of unconditional term rewriting systems and extensions of the A-calculus ([deV87],
[deV90]), as well as in establishing consistency and uniqueness of normal forms for
certain term rewriting systems whose non-left-linearity precludes confluence, so that the
usual proofs of these results break down ([Klo80]).

Note that for any term rewriting system R there is a natural conditional term
rewriting system determining the same equality relation, in which the unconditional
parts of the conditional rules are left-linear. We may define such a conditionalization
RE of R by renaming repeated variable occurrences in the left-hand sides of R-rules (so
that fzz — a becomes fz’z — a or fzz' — a for a new variable 2/, for instance,
rather than fzy — a for new variables z and y) and recording the necessary constraints
among the variables as a collection of equations between variables. By observing that
for each rule this collection of constraints is naturally a system A, conditional rewriting
can be accommodated by transformational methods as follows.

If we denote by RU the collection of unconditional parts of the new conditional
rules (called the unconditional part of RL), we may describe a potential RL-reduction
in transformational terms as an RC-reduction together with a witnessing system of
conditions oA, where A is the system of variable-equations associated with the rule
from R” and ¢ is the matching substitution for the R%-reduction.

Example 2.6 If R comprises the rule fzz — a, then a conditionalization R* of R has
unconditional part fz’'z — a and variable condition z = z’. The potential reduction of
f(z(SK))(z(KI)) to a using RL is captured in transformational terms by trading the
pair (f(z(SK))(z(KI)),a) for the pair (a,a) obtained by R%-reduction, together with
the witnessing system oA = (2(SK),z(K1)), where 0 = {2/ = 2(SK),z — z(KI)}.

Such a transformation of systems corresponds to a reduction by the conditional
rewrite system R’ precisely when the associated witnessing system is C' R-valid, so that
C R-validity — checked before committing to the computational step, at a later time, or
even in a piecemeal fashion — “justifies” the application of RO-REDUCE for the linear
term rewriting system RC. Of course, an ordinary R-reduction corresponds to such a
transformation of systems in which the witnessing system is trivial.

The issue of how to define the rewrite relation associated with a conditional term
rewriting system does not arise in this presentation. The equational conditional systems
used in our presentation could be traded in favor of conditional reduction systems
or normalized conditional reduction systems ([BK86]). Although only the equational
systems will in general capture the original equational theory, all three kinds of
conditional term rewriting systems can be modeled by our transformational approach.
It is worth remarking that the different presentations lead to different R*-confluence
results for terms, and that we circumvent this issue entirely by passing to systems.

Definition 2.7 Let R, R R® and A be as in the preceding discussion.
1. The transformation RY-REDUCE is defined by
(XYY —T,(X')Y),0A,

where X — X' is an instance of RP-reduction with matching substitution o and
witnessing system of conditions o A.

2. The set REVT consists of RE-REDUCE and the transformations from VT, with
the provisos that

e DECOMPOSE may be applied only to a pair of terms which are w R-irreducible,
and

o the witnessing system associated with an R*-REDUCE step is non-trivial iff
the redex term X is wR-irreducible.

The constraints on RY'VT-steps are computationally natural and are designed to
minimize non-determinism; we will not want to perform an R'-REDUCE step out of a
term when there are wR-reductions available, and, as with the RVT transformations,
neither will we wish to perform the unsound decomposition of a head R-redex. Clearly
any RVT step is also an RY'VT-step, although the converse does not hold; we will treat
REVT as an extension of RVT by identifying R-REDUCE with “trivially-conditional
RE-rEDUCE.”

We would like an analogue of Theorem 2.2 for the REVT transformations, but
unfortunately, applications of R*-REDUCE do not necessarily preserve C R-unifiers, since
the witnessing system for such a step need not be C'R-valid. Fortunately, we can restrict
our attention to certain R”VT-steps which do preserve C R-unifiers: validity preserving
RF-REDUCE steps, defined below, have witnessing systems satisfying a property both
stronger and less intuitive than mere C R-validity, but the class of RV T-steps they
determine is shown in Theorem 2.10 to capture C R-equality.

10

A CL-term X is said to be in C'R-normal form if X = H (M) for some LC-term M
in long f-normal form. For each CL-term X, define a new term X to be CRnf(X) if
X 1s not a X-term, and fj(\lj(\n if X = fX1..X, for f € ¥. For a substitution 8, let
6 denote the substitution whose value on any variable z is fz.

Definition 2.8 1. A VT-step is validity preserving if it is an instance of TRIVIAL or
ADD ARGUMENT, or an instance of DECOMPOSE such that the system obtained is
C R-valid.

2. An R'-REDUCE step with witnessing system of conditions oA is validity preserving

if ¢ A is trivial.

If T — T’ by a validity preserving bECOMPOSE step and T is C'R-valid, then T
is C'R-valid by definition. That I'' is C'R-valid when T is CR-valid and T — T” by a
validity preserving RY-REDUCE step follows from the observation that, for all X and Y,
X =Y implies X =¢pr Y (although not necessarily conversely).

The requirement that RYV T-steps are validity preserving is somewhat stronger than
what is actually needed to insure that I'' is C' R-valid when I' — T/ and T is C'R-valid,
namely that oA is C R-valid. But, as explained in the discussion following Definition 3.7
below, this stronger condition is the key to our proof of termination for sequences of
REVT-steps.

We now revisit the earlier example which defeated RVT:

Example 2.9 Let R and T be as in Example 2.4. A conditionalization R* of R has
unconditional part fz’z — a and variable condition 2z’ = z. Application of RF-REDUCE
yields (a,a), (2(SK),z(KI)). DECOMPOSE and two applications of ADD ARGUMENT
further give (a,a), (SKpq, KIpq) . Several WEAK REDUCE steps yield (a,a), (¢,q), and,
anticipating the next lemma, we conclude that ' is C'R-valid. o

The following theorem embodies the facts about RYVT critical to our program and
justifies our use of validity preserving R*VT-steps to study CR-validity of systems; it
recalls Theorem 2.2.

Theorem 2.10 Let R be convergent.

1. (Soundness) Suppose T —>T'. Then T is CR-valid if T is C' R-valid; when the
given step is validity preserving then T is C' R-valid iff T’ is C' R-valid.

2. (Sufficiency) Suppose T is irreducible with respect to validity preserving REVT-
steps. Then T is C'R-valid iff it is trivial.

3. (Termination) Fvery sequence of validity preserving RV T-steps terminates.

The proof of (1) is straightforward. The proofs of (2) and (3) are more delicate; the
former is the focus of the remainder of this section, and the latter of the next.

We will find it convenient for the proofs of sufficiency and termination of REVT
to consider the effects of these transformations on the individual terms appearing in
a system. We define below the relation R on terms, which describes the relationship
between the redex term X of a system I' and the term which replaces X in the system
obtained by applying a validity preserving RU-REDUCE step to I'. Investigation of R
forms the basis of our analysis of the REVT transformations’ expressiveness; in addition,
R is an important component of a new relation on terms whose termination will imply
the termination of sequences of validity preserving R*VT-steps.

11

Definition 2.11 Let R be a term rewriting system, and R the unconditional part of
a linearization RL of R. The relation R(X, X') holds for terms X and X’ provided

[(X,Y) — T, (X'Y), oA

via a validity preserving RE-REDUCE step, and X is w R-irreducible whenever R(X, X')
does not hold.

Note that the relation R is properly contained within the relation [?E, and that if R is
left-linear, then R coincides with R (throughout we will maintain a notational distinction

between the term rewriting system R and the reduction relation L, which R induces).
Moreover, if X is algebraic, then E(X, Y) implies X i}Y, so that Y is also algebraic.
The condition on X corresponds exactly to the second proviso of Definition 2.7(2), and
insures that R is indeed the “term version” of validity preserving R'-REDUCE steps from

REVT. As per our convention, we denote by 1y the reduction relation induced by R.

Throughout the remainder of this section, we will let R denote a term rewriting
system, R" denote the unconditional part of a linearization of R, and R denote the
relation derived from R as defined above. By wR-reduction we will mean the reduction
relation obtained by adding R-reduction to the rules for weak reduction.

We begin the proof of Theorem 2.10(2) with a few preliminary notions and an
investigation of the relationship between X and X. The Y¥.-boundary of a term separates
the parts of the term “near the root” (the X-part) from the rest of the term.

Definition 2.12 1. The X-boundary of a term T, denoted Bx(T), is defined to be
the empty set of occurrences if T is a variable, {u € O(T') | Juy, us such that u =
uyug, T/uy = T;,us € Be(T;)} if T = hTy...T, for h € ¥, and the singleton set
containing the empty occurrence otherwise.

2. The X-part of T, denoted Ps(T), is defined by Ps(T) = {u € O(T) | =3v €
Bx(T') such that v < u}.

In particular, if 7" is not of the form AT;...T,, with h € X, then Ps(T) = 0.

Example 2.13 We have By (Szy) = {77}, Be(2T1...T,,) = {77}, and Bx(f(g9z)(Kzy)) =
{?7}. In addition, Ps(Szy) = {77}, Pe(2T...T,) = {77}, and Pg(f(gz)(Kzy)) = {?7}.

Lemma 2.14 1. If X s algebraic, then X =X.
2. Ifu € Pg(X), then X/u = X /u.

3. Suppose X s in weak normal form. If X is not a X-term, then neither is

X = CRnf(X).

Proof. The proofs of (1) and (2) are routine. To prove (3), notice that if X is not a
Y-term, then the translation under A of X is either an abstraction term or of the form
hMjy...M, with h ¢ &. The long fR-normal form of A(X) is thus also of this form, and

therefore its translation under H does not have a symbol from X at the head. o

12

Lemma 2.15 If X s in weak normal form and X = oS, where S is algebraic, then
there exists a substitution 0 such that X = 0S° and X = 0S.

Proof. Tt suffices to exhibit a substitution § such that X = 6S° and ¢ = a[Vars(S)].
Since X is in weak normal form, Lemma 2.14(3) guarantees that By (X) = Bx(X), so

that every occurrence in S® is also an occurrence in X, and therefore in X. Define
the substitution @ by #(z) = X/u when S°/u = z. Clearly X = 0S°. To see that
0 = o[Vars(S)], choose v such that 2 = S/v = S°/v. Then

o(z) = X/v=X/v=0(5)v) = 0(S/v) = 0z

as desired. o

So if X is not an RP-redex, then X cannot be an R-redex. In fact, for wR-normal
forms, a stronger restriction holds.

Lemma 2.16 Let X be in wR-normal form. If X s not an ﬁ-rede::;, then X is not an
R-redex.

Proof. If X = ¢S for some rule S — T in R, then by the previous lemma, there
exists a substitution # with X = #S° and X = 95 and SO . X is an R%-redex. Since X is
in wR-normal form, it is immediate that X is in fact an R-redex. o

Consequently, the C'R-normal forms of these wR-normal forms have a particularly
nice form.

Lemma 2.17 Let X be in wR-normal form. If X s not an ﬁ-redez, then CRnf(X) =
X.

Proof. By induction on X. If X 1s not a X-term, then the result holds
by definition of X. Otherwise, X = fX;..X,, and by the induction hypothesis,
X = fCRnf(X1)..CRnf(X,). By Lemma 2.16, X is not an R-redex, and so we
easily see that CRnf(X) = X. o

In particular, if X is an atomic type wR-normal form, then CRnf(X) = X.

Lemma 2.18 If X = hX;...X,, is an atomic type wR-normal form, then CRnf(X) =
hCRnf(X1)..CRnf(X,).

Proof. In fact any atomic type wR-normal form looks like hX;...X,, where h is a
constant or a variable. The proof is a routine induction on X using Lemma 2.17 and
considering cases according as X is or is not a X-term. o

Proof of Theorem 2.10(2): One direction is immediate. For the other, it suffices
to see that if some C'R-valid and non-trivial pair (X,Y) from T is irreducible with
respect to ADD ARGUMENT, WEAK REDUCE, and validity preserving R*-REDUCE steps,
then a validity preserving DECOMPOSE step applies out of (X,Y). The proof proceeds
by induction on X.

For such a pair (X, V), X = hX;..X, and Y = h'Y;...Y,y,, and both are atomic-type
terms in wR-normal form. By Lemma 2.18, CRnf(X) = hCRnf(X1)..CRnf(X,)
and CRnf(Y) = h' CRnf(Y1)...CRnf(Yy), and since T is C'R-valid, we must have
CRnf(X) = CRnf(Y). Then h = h', n = m, and CRnf(X;) = CRnf(Y;) for
i=1,...,n,s0 that (X,Y) admits a validity preserving DECOMPOSE step. o

13

In the next section we prove part (3) of Lemma 2.10.

3 Termination of validity preserving R"*VT-steps

Our approach to proving termination is to identify every system with the multiset
of terms occurring in it, and define a new relation on terms with the property that
each validity preserving RV T-step replaces one or two terms in a system with terms
which are derived from them by this new relation. The proof then proceeds by the
standard technique of multiset induction ([Der87]), provided we show that whenever R
is convergent, this new relation is terminating on all terms. The relation which will
support this strategy is given by

+
Definition 3.1 The relation X <%5 ¥ holds if either
e X weakly reduces to Y (write X —Y),

e Y = Xd for a constant d (write X -5,

e X =aX;..X,, ais anon-redex atom, and Y = X; for some i (write X 5—81>Y), or

o X By

If X s—el>Y, we will say that Y is obtained from X by an application of Select, and
if X 25 Y, we will say that Y is obtained from X by an application of Add Argument.

Observe that adding an argument may induce wR-reductions, extracting a subterm
may increase the length of the type of a term, and wR-reduction can increase the size of
a term. So it seems that no simple proof of termination is available based on an ordering
of terms with respect to size, type, or R-reduction size.

Although C'R*-reduction will be seen below to fit our proof specification exactly, we
consider in the next several paragraphs the pitfalls of a more naive reduction relation
with which we might hope would support our strategy of multiset induction. This
relation also arises by examining the effects of the various RV T-steps on individual
terms.

Say that an R%-reduction using rule S° — T' and matching substitution o is sound
if the redex subterm X = oS° satisfies X =¢pr ¢S. Write X — Y if Y is obtained
from X via the relation which is defined exactly as in Definition 3.1, except that the
last clause there is replaced by: X — Y via a sound R°-reduction.

An obvious candidate for a measure proving termination of <-reduction is
u(X) = (i (X), p2(X), u3(X)), where p1(X) is the length of the type of X, pa(X)
is the length of a longest sequence of wR’-reductions out of X, and p3(X) is the size of
X. But even if R is convergent, R%-reduction need not be terminating: if R consists of
the rule fz(gz) — fzx, then R is terminating, but the linearization fz(gy) — fzz is
not, since the term f(ga)(ga) reduces to itself.

The R°-reductions in this example are not sound, but unfortunately, even sequences
of sound R°-reductions need not be terminating, as can been seen by adding to this R
the rule gz — 2. Then f(ga)(ga) reduces to itself by a sound R°-reduction.

14

Since we must in fact consider sound RP-reductions which are not R-reductions, the
restriction to R-normal forms in properly conditional RY-REDUCE steps — and therefore
in R-reductions — is important. For example, permitting sound R’-reductions only in
case the redex term is in R-normal form gives the essentially unique reduction sequence
f(ga)(ga) — faa for our problematic term, and this sequence is clearly terminating.

Of course, the restriction to R-normal forms is also natural, since we will not want
to introduce unnecessary non-determinism into our computations.

Insight into the weak normal form restriction in the definitions of R and R*-REDUCE
will emerge as we consider the structure of the proof of termination of C RT-reduction.
Our proof uses a variation on the technique of logical relations, a fundamental tool in
the study of simply typed A-calculi; see [Mit90] for an introduction and references.

Let 7 denote the set of all terms which are terminating under C'RT-reduction.

Definition 3.2 Define by induction on types the sets
e Sy = {X|X is an atomic type term in 7}, and

o Sop={X|forallY € S,, XY € S3}.

Let & denote the union of the sets S,. We may prove that a term X of type
Q] — ay = ... > @y — ag, where ag is an atomic type, belongs to & by supplying it
with argument terms Y;, ¢ = 1, ..., n, belonging to the appropriate sets S,, and showing
that XY7...Y,, isin 7.

We will show that & C 7, and that all terms are contained in &, thereby proving
termination of C'Rt-reduction. Since S is closed under application by definition, it
suffices to see that it contains all atoms. We begin with a technical fact, and then prove
the required properties of §.

+
Lemma 3.3 IfXCi)Y and X €S, thenY € S.

Proof. By induction on types. o
Lemma 3.4 1. Every non-redexr atom not in X is in S.
2.8CT.

Proof. We prove both statements simultaneously by induction on types.
e We consider first a term X of atomic type.

— (1) If X is a non-redex atom not in X, then no reductions are available out

of X.
— (2) If X € Sy, then it is in T by definition.

e Consider a term X of type a = a1 = as — ... = a, — ag, with aq of atomic
type.

15

— (1) We must show that if Y; € Sy, fori = 1,...,n, then Y = XV;...Y, € T.
By Lemma 3.3 and the induction hypothesis, any C'Rt-reduction sequence
out of Y involving no head reduction must be finite. So there must be a head
reduction in the sequence, and the first such is then necessarily an application
of Select. Without loss of generality, the head reduction may be promoted
so that it 1s the first reduction in the sequence: otherwise the sequence is

XV1..Y, —» XY/..Y, s—el>YZ’ — ... and Lemma 3.3 applies so that Y} € T

by the induction hypothesis. We may therefore assume that the sequence is
sel

hY1...Y, —Y; —» ... But note that Y; € 7 by the induction hypothesis.
— (2) Let X € S and consider an infinite C'R*-reduction sequence

p:XEZOHZlHZQH...

If p consists of some number of wR-reductions and applications of Select
followed by an application of Add Argument, then let d be the constant
introduced in the application of Add Argument; otherwise, let d be an
arbitrary argument. Consider the sequence

pd : Xd— 71d— Zyd — ...

where each reduction performed in pd is precisely the reduction performed
in p. Then pd either eventually coincides with p (if the sequence uses an
application of Add Argument or Select), or else exactly mirrors p. In either
case, pd is infinite, contradicting the induction hypothesis on Xd.

Lemma 3.5 {I,K,S} CS.

Proof. The proofs for all three redex atoms proceed according to the following
scheme using induction over types: consider the atomic-type term Y obtained by
applying the redex atom in question to an appropriate number of argument terms
from S, and suppose that ¥ admits an infinite C' RT-reduction sequence. If no head
reduction were done in this sequence, then some one of these argument terms would also
admit an infinite C'R*-reduction sequence, and this would contradict Lemma 3.4(2).
So there must be a head reduction in any infinite C'RT-reduction sequence out of Y.
Without loss of generality we may assume that the first reduction in the sequence
is a head reduction, since otherwise the first head reduction may be promoted (the
sequence I7, —» IZ; — 71 —» ..., for example, may be traded for the sequence
17, — 7y —» 71 —> ..., and similarly for sequences involving K and S). It is easy
to check that in all three cases, the fact that the argument terms are all in § implies
that the head reduct, and therefore Y, is also in §. o

The remainder of the section will be devoted to the proof of the next lemma; an
informal discussion of its main ideas preceeds the proof. Our proof draws heavily on the

ideas of [BG91a].

Lemma 3.6 X C S.

16

We begin by describing the proof in outline. We aim to show that if f € X
and Xi,...,X, are terms in S, then X = fX;...X, is an atomic-type C Rt-strongly
normalizing term. Let w(X) denote the weak normal form of the CL term X.

For an arbitrary infinite C' Rt-reduction sequence

p:XEZQHZlHZQH...’

each Z; can be shown to be a X-term, so that p is really a sequence of w R-reductions
and applications of Select. In fact, infinitely many of the reductions in p must take place
“near the roots” of the terms Z;, and therefore p induces an infinite sequence

pw w(7)) —w(Ziy) — ...

of R-reductions and applications of Select. Infinitely many of the reductions in p,, are
also “near the roots,” and therefore “projectable” onto the X-parts of the terms w(Z;;),
in a sense to be made precise by Definition 3.7. An infinite sequence pJ, of R-reductions
and applications of Select out of the X-parts of the terms w(Z;,) is in turn induced by
pw. But algebraic terms are easily seen to be terminating under Select and R-reduction,
and we conclude that no such sequence p can exist, i.e., that f is indeed in S.

To make this argument precise, we will require the following notion.

Definition 3.7 Associate to each C R-equivalence class of terms an infinite set of
variables. For every term X define a new term X7, called the projection of X, as
follows:

e if X is not a X-term, then X™ = 2z for a fresh variable z associated with the
C R-equivalence class of X, and

e otherwise, if X = fX;..X,, then X™ = fX7..X].

More precisely, Definition 3.7 defines a class of projections of each term, unique
up to variable renaming. But since any sequence X = 7y — 77 — Zs — ... of
C R*-reductions contains only finitely many variables, we may assume without loss of
generality that in constructing projections for the terms Z;, all C'R-equivalent subterms
of all of the terms Z; are replaced by the same fresh variable. In particular, C'R-
equivalent subterms of a single term Z; are replaced by the same fresh variable.

Initially, we might try to pass directly from p to a sequence p™ of reductions on the
Y-parts of the terms Z; without considering the effects of weak reduction on the ¥-parts
of terms. In this situation we would not intermediately consider the weak normal forms
of the terms Z; in projecting reduction sequences, and would modify the definition of R
by omitting in Definition 2.11 the requirement that X be wR-irreducible when R(X, X)
does not hold. But the next example shows that, in passing from a term which is not
in weak normal form to its ¥-part, projection would not necessarily preserve R-redexes
for such a modified R if R is not left-linear.

Example 3.8 Let R consist of the rule gzz —b. Then gz(Kzy) admits a modified

R-reduction, while [gz(Kzy)]™ = gxz does not.

The fact that R—%Y implies X™ L ¥y7 if X is in weak normal form (indeed

+
X B 'YT — see Lemma 3.11) motivates the introduction of the intermediate
sequence py,, and underscores the necessity of the second proviso in Definition 2.7(2)
and the corresponding condition in Definition 2.11.

17

The problem in Example 3.8 can be summarized by saying that weak reductions can
alter the X-boundaries of terms. Unfortunately R-reductions — and therefore replacing
subterms of terms by their C'R-normal forms — can also alter ¥-boundaries. Recalling
that every R-redex is “almost ¢S” for some rule S— 7T in R, in the sense that for
every x; and zo in S° which correspond to different occurrences of the variable z in
S, 0x1 = oxs, we see that requiring only that oA be CR-valid Definition 2.8 is too

permissive to insure that X™ L5y whenever X 25 Y. But insisting instead that cA
be trivial is enough to guarantee that X-boundaries are preserved under projection, as
desired.

Ultimately, the motivation for investigating the sequence p, is that we do not need
to know exactly what lies below the ¥-boundaries of the terms Z; in p to understand
the essential nature of an infinite C' RT-reduction sequence; we need only know that the
reductions in p reflect validity preserving R*VT-steps and that their ¥-boundaries are
preserved by projection. Although we may not be able to enforce any constraints on the
entire substitution parts of the terms Z; in p, it will turn out that we can at least insist
that their non-X-parts behave nicely. Indeed, we can arrange that if S — T is a rule
in R, then for each subterm ¢S° of one of the terms Z; in which z; and x4 correspond
to different occurrences of the same variable in S, the C'R-normal forms of the non-X-
parts of oz and oz are identical, and the X-parts of oz and oxs are identical. The
requirement that oz = oz is exactly this constraint.

We begin the formal proof by collecting some easy facts about X™.

sel sel

Lemma 3.9 1. Let X be a X-term. If X —Y, then X™ — Y.
2. X7 = X"

3. If S is algebraic, ™S = (0S)™, where o™ is such that for every variable x,
o"x = (ox)".

4. If X and 'Y are atomic type weak normal forms such that X = 37, then X™ =YT™.

Proof. Straightforward. o

The following definition will be useful in analyzing the effects of C'R*-reductions on
terms.

Definition 3.10 For every term X, Bot(X) = {Y|3d € Bx(X) such that Y = X/d}.

It is easy to see that if Y € Bot(X) then X S—Gl»Y, and if S is algebraic then
Bot(cS) = [J{Bot(cz)|z € Vars(S)}.

Say that a CRT-reduction out of X is a bottom reduction if the redex subterm of
X is in Bot(X), and a top reduction otherwise. The following lemma shows that top

~

R-reductions yield non-identical terms in the passage from p,, to pJ,.

Lemma 3.11 If X By and X is in weak normal form, then X™ i»Y”, and if the
first reduction s a top reduction, then X™ ZY7".

Proof. The proof is by induction on X. If X is not a X-term, neither is Y, so that
X" =YT. Otherwise, X = fX;...X, for f € X.

18

If IA%(X,Y) does not hold, then ¥ = fX;..X] .. X,, so that by the induction

~

hypothesis, X i»X;f, and therefore X™ 5 y™. If X 25 is a top redex, then
so is X iX{c. Thus, X7 # X;",and so X" £ZY".
If [?i(X, Y) using a rule S— T in R and matching substitution o, then X~ Ly

also using S — T but with matching substitution ¢™. To see that in fact, X™ LY”,
observe that for all z; and x5 in S° replacing the same variable in S, 6™ (21) = (cz1)"

and 0" (z2) = (ox2)", and oz; and oxy are atomic-type weak normal forms such
that ¢z1 = oz3. Then 0"z; = oc"x1 = (0z1)" = (cz2)" = 06"xz2 = o"xg, where
(cz1)™ = (022)™ by Lemma 3.9. o

_The next corollary guarantees that termination of bottom terms is closed under
wR-reductions and applications of Select.

+
Corollary 3.12 If X 9 x using no applications of Add Argument, then for all

+
Y’ € Bot(X') there exists Y € Bot(X) such that y Ly Moreover, if the first
reduction is a bottom reduction then there exist terms Y € Bot(X) and Y' € Bot(X')

it
such that Y <% v,

Proof. The assertion is proved by induction on X. If X is not a X-term, then
Bot(X) = {X}, so we may take Y = X. Then if Y’ € Bot(X'), we have X’ S—El»Y’, SO

sel

CRT . cr+t . .
that X — X' — Y, ie.,, X —» Y’. Otherwise, X is of the form fX;...X,.
If X’ is obtained from X by a head R-reduction or an application of Select, then if
Y’ € Bot(X'), we have Y’ € Bot(X), and so we may take Y =Y".

+
IfX=frX:.X, LN fX1..X[.. X, = X', then either Y € Bot(X;) for some ¢ # k,
orelse Y € Bot(X]). In the first case, Y’ € Bot(X;) C Bot(X), so we may take Y =Y.
If Y’ € Bot(X],), then by the induction hypothesis, there exists Y € Bot(Xj) such that

+
y <y Y, and this Y is also in Bot(X). Moreover, if the original reduction is a bottom

+
reduction, then Xj CE»X,Q is as well, and so by the induction hypothesis, there exist

++
terms Y € Bot(Ky) and Y’ € Bot(X],) such that y < v’ But then Y € Bot(X)
and Y’ € Bot(X') as desired. o

+
Corollary 3.13 If Bot(X) C T and XY X not using any applications of Add
Argument, then Bot(X') C T.

+
Proof. It suffices to see that if X <% X’ not using any applications of Add
Argument, then Bot(X') C T the result is then obtained by induction on the length

+
of the reduction sequence X X LetY € Bot(X'). Then there exists Y € Bot(X)
+
such that Y CE»Y’, and since Y € T, we must have Y/ € T, too. o

+
For the proof of termination, we will want to see that if X%Y, then

CRY . . . cr+t
w(X) == w(Y), and if the first reduction is a top reduction, then w(X)=—= w(Y)
with at least one top reduction done. That is, we must see that the various top CRT-
reductions are preserved in passing from p to py .

19

It is easy to see that X -5V implies w(X) -2 w(Y), and the original reduction
cannot be a top reduction. We also have that X sely implies w(X) S—el>w(Y), and

both reductions are top reductions. But we further require that if XiY, then
w(X) BN w(Y) and when the first reduction is a top reduction, there must be at least

one top R-reduction in w(X) i>>—w(Y) (see Corollary 3.18); we will make use of the
following “parallelized” version of R-reduction in proving this.

Definition 3.14 Define + to be the least relation such that
1. =Cw—
2. R Cw—
3.1f A; — B; fori=1,...,n, then Ay...A, — B1...B,.
An +—-reduction is proper if it is either an ﬁ—reduction, or if it is an application of

the third clause of Definition 3.14, where the head symbol of A; is a constant from X
and for some 7, A; — B; by a proper —-reduction.

Lemma 3.15 /. If X — Y but not ﬁ(X,Y), then the head symbols of X andY are
wdentical.
~ +
2. 1 C— C Ny Moreover, if X — Y 1is a proper reduction, then X fyy
and at least one top reduction is done in this reduction sequence.

~ ~

3. IfX By by a top reduction, then X — Y wia a proper reduction.

Proof. The first two statements are proved by induction over the shortest derivation
of X — Y; the third is proved by routine induction on X. o

Lemma 3.16 If E(X,Y), then fi(w(X),w(Y))‘

Proof. If R(X,Y) does not hold, the w(X) = X and w(Y) = VY, and there is
nothing to prove. If R(X,Y), then X = S and Y = 0T for some rule S — T in R
and substitution #. Then w(X) = ¢'S and w(Y) = §'T for the substitution # such that
¢'(z) = w(fz) for all variables z, and so indeed R(w(X), w(Y)).

The “parallelization” of R in Definition 3.14 exactly supports R-reduction out of
weak normal forms.

Proposition 3.17 If X = Y, then w(X) — w(Y), and if the first reduction is proper,
then so is the second.

Proof. By induction over the measure 7(X) = (r1(X), 72(X)), where 7 (X) is the
number of wR-reductions out of X and 72(X) is the size of X.

If X isin weak normal form, then since X — Y, we have X iD» Y, and since algebraic
rewriting does not introduce new weak redexes, Y must be in weak normal form. Thus
wX)=X =Y =w(Y).

If X is not a head weak redex, then X = hX;...X,, and either h is a non-redex atom
or else X is not of atomic type. We consider cases for the reduction X — Y:

20

e If X =Y there is nothing to prove.
o If E(X,Y), then by Lemma 3.16,]A%(w(X), w(Y)).

e Otherwise, since X and Y must have identical head symbols by Lemma 3.15,
Y=m..Y,and X; — YV, fori=1,...,n. If X — Y is proper, then h € ¥ and
there exists a k such that X — Y} is proper. Then by the induction hypothesis,
w(X;) = w(Y;) fori =1,...,n, so that w(X) — w(Y), and, moreover, if X — Y is
proper, then so is Xj — Y} for some k, and w(Xy) — w(Yy) is as well. But then
since h € &, w(X) — w(Y) is also proper.

If X 1s a head weak redex, then [?i(X,Y) does not hold. Assume without loss
of generality that X Z Y. Then the head of Y is identical to that of X, and the
argument terms in Y are all obtained from its argument terms in X by +—-reduction.
Let Xy and Yy be the terms obtained from X and Y, respectively, by doing the
head weak reductions. Then Xy — Yy, and by the induction hypothesis, we have
w(X) = w(Xo) = wYo) = w(Y). o

Top R-reductions are thus preserved in the passage from p to py:

Corollary 3.18 IfXLY, then w(X) —R»w(Y), and if the first is a top reduction,

~

then w(X) BN w(Y') with at least one top reduction done in this sequence.

Proof. Straightforward application of Lemmas 3.15 and 3.17. o

The final fact we will need is easily stated and proved.

Lemma 3.19 If X s algebraic, then every sequence of R-reductions and applications
of Select originating in X termainates.

Proof. By induction over the measure v(X) = (v1(X),v2(X)), where v1(X) is the
shortest length of an R-reduction out of X and v(X) is the size of X. o

We are now in a position to prove Lemma 3.6.

Proof of Lemma 3.6: Let X; € Sfori:=1,...,n. Weshowthat X = fX;..X,, € T.
Note that by Lemma 3.4, X; € 7 for each 1.
sel sel

Since for any Y € Bot(X) there exists an i € {1,...,n} such that X —5 X; — Y,
+
and since X; € § and S is closed under C—R», by Lemmas 3.3 and 3.4 we have that

Y € T. So for every term X’ such that X C—R;r} X' without using an application of Add
Argument, Bot(X') C T by Corollary 3.13.
Now, let
pZXEZO—>Z1HZ2—>...

be an infinite C Rt-reduction sequence out of X. If some Z; is not a X-term, then the
first such Z; must be obtained from Z;_; by either an application of Select or R. In
both cases, Z; must be in Bot(Z;_1), and therefore 7; € 7. Thus, every term in the
infinite sequence p must in fact be a X-term, and consequently, no applications of Add
Argument are done in p.

21

If only finitely many top reductions are done in p, let Z; be the result of the last
one. Then some term Y € Bot(Z;) must admit an infinite sequence of wR-reductions
and applications of Select. But this is impossible, since Bot(Z;) C T for each i by
Corollary 3.13.

So there must be infinitely many top reductions in p. Consider the sequence of
reductions induced by p, given by

pw W(7)) —w(Ziy) — w(Zi,) — ...

This sequence of R-reductions and applications of Select exists by Corollary 3.18 and the
fact that Select only applies to terms whose head symbols are non-redex atoms. Since
each top R-reduction in p yields at least one top R-reduction in p,, and each application
of Select in p yields one in p,,, the sequence p,, contains infinitely many top R-reductions
and applications of Select.

Consider, finally, the sequence

P (W(Zi)" — (w(Ziy))" — ...

of algebraic terms. By Lemmas 3.11 and 3.9(1) this sequence consists of infinitely
many R-reductions and applications of Select. But by Lemma 3.19, every such sequence
of reductions is terminating. Thus no infinite sequence p can exist, so that f € X,
completing the proof. o

Taken together, Lemmas 3.3 through 3.6 prove Theorem 2.10(3).

Theorem 3.20 Every CL-term is in 7T .

4 The Unification Problem

We show that we may generate a complete set of higher-order FE-unification
transformations from RYVT in precisely the same way that narrowing transformations
are derived from a convergent term rewriting system.

4.1 Transformations for higher-order F-unification

Recall that a typical narrowing step involves syntactic unification. Since terms may
have incompletely specified types in our setting, the syntactic unification here must be
rich enough to incorporate type-unifications needing to be performed. In particular,
in applying the transformations of the next definition, the computation of the unifier y
implicitly involves some type unification; accordingly, we will take as our transformations
for syntactic unification Eliminate, Decompose, and Type-Unify as defined in [Dou93]
together with a transformation which deletes trivial pairs of a system; the proof given
there is easily adapted to show soundness and syntactic unification completeness of this
set of transformations.

Definition 4.1 Let R be a convergent term rewriting system, and R° the unconditional
part of a conditionalization of R. The set R“UT is obtained by adding the following
transformations to those for syntactic unification:

22

o Weak Narrow:
[(XY) = [p], pT, (uX*,pY),

where there exists a non-variable occurrence u of X and a weak reduction rule
S — T with fresh variables such that p is a most general unifier of X/u and S,
and X* = X[u « T].

o Add Argument:
I (X Y) = [u], pl', (uX)d, (pY)d)

where y = (7 — 7') is a most general type-unifier of the set consisting of the
type of X, the type of Y, and (just in case these are each atomic types) the type
(s = t), for fresh type-variables s and ¢, and where d is built from the first fresh
parameter in Args, given type 7.

o Split:
U (X1 - Xp,hZy - Zp Y1 Yy) =

[/’L]’ /’LF, <Z1a/'LZ1>a"'a <Zm7/’LZm>J </’LX1a/'LY1>:"'a </’LXTM/'LYTL>’

where m,n > 0, z € Vars, h is a pure atom, each z; is a fresh indeterminate given
the same type as 7Z;, 1 < i < m, and p 1s a most general unifier of z and hzy - - - z,.

e RL_Narrow
U5 (X,Y) = [p], uT, (pX*, p1Y) pA,

when there exists a non-variable occurrence u of X and a rule S — T in R® with
fresh variables and associated witnessing system of conditions pA such that p is
a most general unifier of X/u and S°, and X* = X[u « T].

We adopt the convention that no R*UT-step is to be done out of a solved or trivial
pair. This respects the intuition that the solved part of a system is merely a record of
an answer substitution being constructed.

To see the need for unification with (s — ¢) in the definition of Add Argument,
suppose X = Z{7%q® and Y = Zg_wbﬁ for some types a and § and type-variables u
and v. In order that we can apply Add Argument to (X,Y), we require that both X
and Y be of functional type. The way we enforce this constraint is by unifying the type
variables u and v with one another as well as with a “generic functional type” (s —).

An implementation of RFUT would presumably not treat Add Argument as a
separate transformation, but would rather incorporate it into more generous versions of
Weak Narrow and R”-Narrow which supply arguments as needed. It is easier to analyze
the transformations separately, however, and we want to emphasize the fact that the
RIUT transformations are immediately derived from the REVT transformations.

We will need to be careful about the set of variables occurring in a system. It is
easily checked that if T = T", then Supp(T') C Supp(T’). In addition, solved variables
remain solved after application of an RYVT transformation, i.e., if [=>T", then
{z|z is solved in T} C {z|z is solved in T'}. The verification relies on the conventions
that the transformations are not performed on trivial pairs and that distinct terms do not
have the same type-erasures (the latter insures that distinct variables are not identified
after application of a type-substitution).

23

To respect the intuition that constants from Args are not part of our unification
problems and are introduced only as dummy arguments, we must confine our attention
to pure problems and substitutions. Of course, any problem can be considered a pure
one by suitably defining Args.

Our method of computing C' R-unifiers is sound:

Lemma 4.2 (Soundness) If# is a pure C R-unifier of T' and T = T’ via an REUT-
step, then 6T s C'R-valid.

Proof. Use the notation of Definition 4.1. Our hypothesis entails that 0[u] is C R-valid,
so u <cpr 0, and hence 0y =cg 6. It follows that dul’ =¢g 6T, and so we need only
show that # C'R-unifies the “redex-pair” of the transformation.

When the transformation is Weak Narrow or R”-Narrow, the argument is exactly as
for first-order narrowing.

When the transformation is Add Argument we want to see that 60X =¢cg Y. But
O((uX)d) =cr O((nY)d), that is, (6X)(0d) =cr (#Y)(6d) and we may invoke the
extensionality rule since 6 is pure and so 0d is guaranteed to be new to (#X,0Y).

In the case of Split, the fact that 0X; =cr OuX; =cr OuY; =cr 0Y; for 1 <i<n
implies that we need only argue that 6 (x,hZy---Zp) is CR-valid. We compute:
pHx = phzy - zpy, by definition of y, so 0z =cpr Opx = 0p(hzy - - z2m) =cr O(hzr -+ 2m),
but our hypothesis implies that for each i, 8z; =¢cg 07;. o

We now address completeness. The Lifting Lemma below is the main tool for proving
that for any system T, the set of transformations R“UT can enumerate a complete set
of C' R-unifiers for I' when R is convergent. For its statement and proof we require the
following notion. Denote by D# the domain of a substitution 6.

Definition 4.3 A pure idempotent substitution 6 is a normalized C R-unifier of a
system I if

e Dy and the type-erasures of the terms in D#; are contained in Supp(T),
e AT is C'R-valid, and
e for each unsolved variable x of T', #z is in C'R-normal form.

Write NCRU(T') for the set of normalized C R-unifiers of T.

In outline, the proof of the Lifting Lemma is a standard construction, but there are
subtleties in the use of normalized substitutions. We need to know that C'R-normal
forms are wR-irreducible, unique in their C'R-equivalence classes, and closed under
subterm extraction (in fact, any class of terms with these properties would suffice for our
purposes). All but the last assertion can be derived from classical facts about normal
forms on £C and CL. Closure under subterm formation, however, seems to require
a complete reconstruction of the classical theory of strong reduction ([CF58], [Hin67],
[Ler67]) in the presence of R-reduction to establish a generalization of Curry’s normal
form theorem and its converse, namely that the classes of C'R-normal forms and terms
which are R-strongly irreducible are the same. The class of C'R-normal forms as defined
above is shown in [Joh92] to possess the properties we require.

In the proof of the Lifting Lemma we will require the facts that i) if X is in C'R-
normal form and Y and Z are subterms of X such that Y =¢g Z, then Y = 7, and
ii) if X is in C'R-normal form, then X is not the redex-term for any validity preserving
RI-REDUCE step.

24

Lemma 4.4 (Lifting Lemma) Let § € NCRU(T) and let (X,Y) be an unsolved pair
inT. If
r — 10

is a validity preserving REVT-step out of (X,Y), then there exists a Il and ¢’ with
r=1r
such that
1. 0" = 0[Supp(T)],
2. ¢'II' =11, and
3. ¢ € NCRU(IT).

Proof. Write T as T'; (X,Y); since (X,Y) is not solved, # is C'R-normal on the
variables of X and Y.
In case II is obtained by WEAK REDUCE, we have

T = 6176 (X,Y) — 6", ((§X),6Y) =TI

where (0X)" = (0X)[u < 6T] for a combinatory weak reduction rule S — T with fresh
variables and matching substitution § such that D§ C Vars(S). In addition, u is a
non-variable occurrence of X since ¢ is pointwise weakly normal on the variables of X,
and so (6X)/u = 6(X/u). Letting o be a most general unifier of X/u and S, and putting
X' = X[u + TJ, the following is a Weak Narrow step:

=1 (X,Y) = [o],0l’, (c X', oY) = 1T

Take 6’ to be §UJ. Tt is easy to see that §' = §[Supp(T')] since the variables of S are
fresh.

To check that §'TI’ =TI, observe that since #' unifies X/u and S, ¢ < 6’ so that §'[o]
is trivial and #'c = #’. The verification that ’c X’ = (#X)’ is routine.

To verify that §' € NCRU (IT'), first note that ¢'TI' is C R-valid since #'TI' = II and
WEAK REDUCE steps preserve C'R-validity, so that II is C' R-valid. Since 6 is pure and
Dé C Vars(S), ¢ is pure. Now let z be an unsolved variable of TI'; we show that ¢’z
is in C'R-normal form. Such a z is either a variable from ' or is introduced by o. If z
is from I' then z was unsolved there since the WEAK REDUCE step was not done out of
a solved pair, and so 6’z = 6z is C' R-normal. So suppose z is introduced by o. Then z
is a variable in (6X)/u, i.e. for some z in X/u, z is in oz. This implies that 6’z is a
subterm of #cx. But this latter term is simply fz, which is C'R-normal, and subterms
of C'R-normal terms are C'R-normal.

In case II is obtained by validity preserving R*-REDUCE, we have

0T = 0T'; (6X,0Y) — 0T, ((0X)',0Y) 6A =TI

where (0X)" = (0X)[u « &T)] for a rule S°—T in R® with fresh variables and
witnessing system A where DJ C Vars(S°).

Since # is pointwise C'R-normal on the variables of X, the remark immediately
preceding this lemma insures that u is a non-variable occurrence of X, and, in fact,
0(X/u) = §S°. Letting o be a most general unifier of X/u and S° and putting
X' = X[u ¢ T], the following is an RL-Narrow step:

25

F=T"(X,Y) = [o],0l’, (¢ X', 06Y),cA =TT

Take 6’ to be § U §. Tt is easy to see that 6/ = O[Supp(T')] since the variables of S°
are fresh.

To check that ¢TI’ = TI, observe that since ¢’ unifies X/u and S° o < ¢ so that
6'[c] is trivial and #'c = 0'. Also §'c A = ' A = §A. That §'c X’ = (X)' is a routine
calculation.

To verify that 6/ € NCRU (IT'), first note that §'TI' is C R-valid since #'TI' = II and
we are assuming that the RE-REDUCE step in question is validity preserving. Since 6 is
pure and D§ C Vars(S°), 6’ is pure. The proof that ¢’ is C'R-normal on the unsolved
variables of T' exactly as in the case the RL'VT-step is WEAK REDUCE.

In case II is obtained by ADD ARGUMENT, we have (letting the type of X be

(= B)):
0T = 0T'; (0X,0Y) — 0T, ((6X)d, (0Y)d) =11,

let the type of X be 7 and the type of Y be 75, and in case these are each atomic types,
let (s — t) be the type introduced as in the definition of Add Argument. An application
of Add Argument yields II':

[=T (X,Y) = [o],0l’, ((¢X)e, (cY)e) =10;

Choose 6’ to be 6 Ud, where g = {s := a,t := 8} and §; is the identity. Clearly
6" = 0[Supp(T)].

To verify that §'TI' =TI, first observe that 6 unifies 71, 7, and (s — t) since it maps
each of these to (& = 3). So o < 6, and therefore §'[o] is trivial. Furthermore, §'c = ¢’
so that #’c and # agree on IV, X, and Y. Finally, since §' (¢ X) = 0X has type (a =),
#'e must indeed have type a. Moreover, the fact that ¢ is pure implies that I' and 6T
involve the same Args parameters, and so d and e have the same type-erasure.

To see that §/ € NCRU (IT'), first note that #'TI" is C'R-valid as before; then observe
that #’ is appropriately C' R-normal since the R*VT-step was not done out of a solved
pair, and so new unsolved term-variables appear in II'. It is clear that ¢’ is pure.

In case II is obtained by DECOMPOSE, we have two cases: If #.X and #Y have the
same constant at the head, then X and Y also have these constants at the head, and

we may obtain I’ by applying the syntactic unification transformation Decompose to
(X,Y) and take €' to be 6. Otherwise, we can describe (X,Y) and 6 (X,Y) as follows:

(X,Y) = (¢ X1.. Xp, hZ1.. 2 V1. V)
where m, k > 0, x € Vars, h is pure, and
6<X,Y> = <£lA1...AnB1...BmL1...Lk,(lAl...Ancl...Cle...Qk>,

for some n > 0 with

(lAlAnBle = 91‘,
Li = HXZ',
aAy...A, = 0h,

Cz' = QZZ', and
Qi =0Y;.

26

The repetition of the A; is justified by the remark immediately preceding this lemma.
The assertion that h cannot be a constant from Args follows from the fact that 6 is a
pure substitution.

We obtain II' by applying Split:

I'= F/; <1‘X1Xk,hZ1ZmY1Yk> —
[o],0T, (21,071) .o, {2m, 0 Zm), (6 X1,0Y1), ..., (6 X, 0Yy) =TI,

where o is a most general unifier of z and hz;...z,. Take 6’ to be 6§ U d, where &g is the
identity and 01 = {z1 := B1, ..., z2m := B }. As before, §' = 6[Supp(T)].

To check that ¢TI’ = TI, we first see that 6’ unifies x with hzi...z,,, since applying
6" to each yields aA;...A,B1...B,,. So #'c = 0’ and the pairs of #'II’ match the pairs of
IT except that the trivial system o] does not appear in IT and when n > 0, I’ will not
include pairs corresponding to the pairs (A;, A;) in TI.

As usual, #'II' is C'R-valid, and the fact that each B; is pure and C R-normal
guarantees that 6 is pure and C' R-normal. Thus # € NCRU (TT'). o

4.2 Refinements

Before proving that the REUT transformations can enumerate a complete set of CR-
unifiers for convergent R and arbitrary systems of CL-terms, we indicate a way to
decrease the non-determinism inherent in our C'R-unification method.

Definition 4.5 A system is semi-simple if it is irreducible with respect to WEAK
REDUCE, ADD ARGUMENT, and R-REDUCE.

We will see that it suffices to apply R*UT-steps only to semi-simple systems.
Reducing the system obtained after every R¥UT-step to a semi-simple system clearly
yields a C'R-unification procedure with a smaller search space than would be otherwise
obtained; reducing a system to a semi-simple one recalls the SIMPL phase of Huet’s
classical higher-order unification algorithm. In the present setting, we may view such a
reduction as the normalization phase of a normalized narrowing algorithm ([Ret87]).

With this in mind, we isolate the following corollary to Theorem 2.5:

Lemma 4.6 Any sequence of WEAK REDUCE, ADD ARGUMENT, and R-REDUCE steps
applied to a system will terminate in a semi-simple system with the same C R-unifiers.

Transformation-based unification methods attempt to reduce a system to be unified
to a solved form which essentially represents a unifier. For the purposes of unification
modulo a theory, however, it is not sufficient to have transformed a system into a unifiable
one since some semantic unifiers may be more general than a most general syntactic
unifier. For example, (Kaz, Kay) has the identity substitution as a semantic unifier
but not as a syntactic unifier.

On the other hand, if T is a solved system, then for any R, the substitution associated
with I' is more general than any C'R-unifier. The following lemma will allow us to ignore
the solved part of a system when searching for C'R-unifiers; indeed, we will not apply
any transformation out of a solved pair. This restriction is consistent with the intuition
that the solved part of a system is merely a record of an answer substitution being
constructed.

27

Lemma 4.7 Let T be syntactically unifiable. If 6 is a C'R-unifier of I and a syntactic
unifier of the unsolved part of T, then mgu(T) <cgr 0.

Proof. Let the solved and unsolved parts of T' be [¢] and II respectively. We first
claim that if v is mgu(IT), then mgu(T) is yo. Certainly yo[o] is trivial and the fact
that voll is trivial follows from the fact that o is the identity on II, so that vyo i1s a
unifier. To see that it is most general, let § be any unifier of [¢],TI. Tt suffices to show
that §yo = §. But since v is idempotent and v < §, we have §v = 4. Similarly do = ¢
since § unifies [o].

Since # unifies TI, v < f and so yo < flo. But since § FE-unifies [¢] and o is
idempotent, o =cp 6. o

4.3 The Algorithm and Its Completeness

Definition 4.8 The non-deterministic algorithm R is the following process:
Repeatedly:

1. Reduce the system to a semi-simple system via RV T-steps and then apply some
RYUT-step to a non-trivial unsolved pair.

2. If at any point the system is syntactically unifiable by a pure substitution then
return a most general unifier of the system without transforming the system (but
do not necessarily halt).

Observe that the reduction of a system to a semi-simple system uses ordinary
RV T-steps, which are guaranteed to preserve unifiers. Indeed, the RF-REDUCE
transformations never appear in the description of the algorithm R, emphasizing the
fact that they exist only as a theoretical underpinning for the RLUT transformations,
and so would never appear in an implementation of RU .

Algorithm RU generates a stream of C'R-unifiers for a given input system, although
if we are to avoid losing unifiers we cannot necessarily halt computation after arriving
at a syntactically unifiable system. The next example illustrates this phenomenon.

Example 4.9 Consider the semi-simple system T' = (uaz, uay). If every run of the
algorithm RU were eagerly to return a most general unifier of a syntactically unifiable
system, then no RIU-computation out of I' would return a unifier of I' more general than
the substitution {u — K}, which is a C' R-unifier of T for any R. Algorithm R would
therefore not be complete.

It follows from Lemmas 4.2 and 4.6 that if Algorithm R is run on an initial system
' and returns a substitution 6, then € is a C'R-unifier of ['. The main result of this
paper is a converse.

Example 4.10 Let R be consist of the equation f(gz) — a, and consider the semi-
simple C'R-unifiable pair {f((ugz)y), a). Computing with Algorithm RU gives

(F((ugz)y),a) = (u, K), (v, 92), (w,y), (fl9y),a) = (v, K}, (a,a), (v,92), (w,y),

where in the first step ugz is unified with the left-hand side of a rule Kvw — v, and
in the second the rewriting of f(gy) is performed. The substitution #, where 6y is the
identity and 6y = {u — K}, is thus a C'R-unifier of the original pair.

28

Example 4.11 Let R consist of the rule fzz — a and let T’ be the system

(f(uz)(u(SKz)),a),

where u has type (r — r) — 0 and z has type r — r. One application of RE-Narrow
yields

(y,uz), (z,u(SKz)) (uz,u(SKz)),

(here and below we suppress writing trivial pairs). The syntactic unification
transformation Decompose gives

(y,uz), (z,u(SKz)), (z,(SKz)).
After an application of Add Argument we have

(y,uz), (z,u(SKz)), (zp, (SKz)p) .

Two WEAK REDUCE steps further give

(y,uz), {(z,u(SKz)), (zp,p),

and one Weak Narrow using Sz zaz3 — z123(2223) and pair (zp,p) yields

(Y, u(Sz122)) , (2, u(SK(Sz122))), (z, Sz1232), (21P(22p),P) , (23, D) -

Another Weak Narrow, this time employing Kwyws — wy and pair (z1p(z2p), p) leaves
us with

(y,u(SKz2)), (z,u(SK(SKz3))), {(z,SKz2), (z1, K), (w1,p), {wa, z2p) , {23, D).

This system is solved, so we extract the C'R-unifier § where 6; is the identity and
61 = {a: — S[{ZQ}

Theorem 4.12 (Completeness) Let R be convergent, and let § be a pure C R-unifier
of T'. Then there 1s a computation of Algorithm RU on T producing a pure CR-unifier
o of T with ¢ <cpg 0[Supp(T)].

Proof. Since every pure C R-unifier of T' is pointwise C'R-equal to a normalized
C R-unifier of ', we may prove the theorem under the additional hypothesis that
6 € NCRU(T).

Let the degree of a system be the maximum length of an RYVT-sequence out of it.
The proof is by induction on the degree of 6T

If 6 1s a unifier of the unsolved part of I, then T is unifiable and Algorithm R can
return a most general unifier 0. By Lemma 4.7, 0 <¢g 6. This situation obtains if the
degree of AT 1s 0.

Otherwise, we define a system II’ and a substitution 6’ as follows:
1. If T is not semi-simple, apply an RV T-step to obtain I’ and let 6 be 6.

2. Otherwise, choose an unsolved pair (X,Y) from T so that #X # Y and perform a
validity preserving RLVT-step out of (#X,0Y) yielding T (such a step is possible
by part (2) of Theorem 2.10). The Lifting Lemma applies, yielding TI" and 6.

29

In each case, the action performed is an RU-step, ' € NC'RU (II') and the degree of
'TI" is less than the degree of 6T (using the facts that §/TI' = 1T and that no RV T-steps
are done out of trivial pairs).

By induction, there is a computation of Algorithm R# on II' producing a CR-
unifier o of I’ with ¢ <cg ¢'[Supp(Il')]. By soundness, ¢ is a C'R-unifier of T'. Since
Supp(T') C Supp(Tl'), ¢ <cr 0'[Supp(T)]. But since ' = 0[Supp(T)], o <cr 0[Supp(T)]
as desired. o

It is important to observe that weak termination of validity preserving R*VT-steps
is all that is required to show C R-unification completeness of RFUT.

5 Conclusion

We have defended the claim that the formulation of higher-order logic using combinators
allows routine algebraic techniques to be applied to higher-order unification and leads
to a smooth interaction between these methods and the standard tools of first-order
unification.

The ordinary higher-order unification problem submits to a narrowing algorithm in
the combinator setting. For higher-order E-unification in the situation that E itself
allows narrowing, the combined problem is solved by combining these algorithms (in a
naive way for the left-linear case, and by passing to conditional rewriting otherwise).
The result is a complete enumeration procedure with a finitely-branching search space;
we expect that this technique will yield an alternative approach to that in [Sny90] to
higher-order E-unification under arbitrary E.

In light of the theoretical intractability of general higher-order unification and the
practical utility of pre-unification, a crucial line of investigation is now an analysis
and implementation of higher-order E-preunification in the combinator framework, and
the development of tools to control the redundancy which is inherent (as shown by
Huet) in any complete enumeration method for higher-order unification. Tt will also be
important to focus on particular standard equational theories such as associativity and
commutativity; our conjecture is that the known algorithms for such situations can be
readily adapted to the algebraic higher-order context.

References

[Bar90] F. Barbanera. Adding algebraic rewriting to the Calculus of Constructions:
strong normalization preserved. Eztended Abstracts, The Second International
Workshop on Conditional and Typed Rewriting Systems, Center for Pattern
Recognition and Machine Intelligence, 1990.

[BG91a] V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic
strong normalization. To appear, Theoretical Computer Science.

[BGI91b] V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic
confluence. To appear, Information and Computation.

[BK86] J. A. Bergstra and J. W. Klop. Conditional rewrite rules: confluence and
termination. Journal of Computer and System Sciences 32, pp. 322-362, 1986.

30

[Bou90] A. Boudet. Unification in a combination of equational theories: an efficient
algorithm. Proceedings of the Tenth Conference on Automated Deduction,
Springer-Verlag LNAI 449, pp. 292-307, 1990.

[Bre88] V. Breazu-Tannen. Combining algebra and higher-order types. Proceedings of
the Third Annual IEEE Symposium on Logic in Computer Science, IEEE Press,
pp. 82-90, 1988.

[CF58] H. B. Curry, R. Feys. Combinatory Logic, Vol. I, North-Holland, 1958.

[Der87] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation 3,

pp. 69-116, 1987.

[DJ90] N. Dershowitz, J.-P. Jouannaud. Rewrite systems. Handbook of Theoretical
Computer Science B: Formal Methods and Semantics, J. van Leeuwen, ed.,

North-Holland, pp. 243-320, 1990.

[Dou92] D. J. Dougherty. Adding algebra to the untyped lambda calculus. Proceed-
ings, Fourth International Conference on Rewriting Techniques and Applica-
tions, Springer-Verlag LNCS 488, pp. 37-48, 1991. Also in Information and
Computation 101-2, pp. 251-267, 1992.

[Dou93] D. J. Dougherty. Higher-order unification via combinators. Theoretical Com-
puter Science B 114, pp. 273-298, 1993.

[ENI89] C. Elliott. Higher-order unification with dependent function types. Proceedings
of the Third International Conference on Rewriting Techniques and Applica-
tions, Springer-Verlag LNCS 355, pp. 121-136, 1989.

[ENI90] C. Elliott. Extensions and applications of higher-order unification. Dissertation,
Carnegie-Mellon University, 1990. Avaliable as Technical Report CMU-CS-90-
134.

[EP89] C. Elliott and F. Pfenning. eL.P: A common Lisp implementation of A-Prolog in
the Ergo support system. Available by ftp from elp-request@cs.cmu.edu, 1989.

[Fay79] M. Fay. First order unification in an equational theory. Proceedings of the Fourth
Workshop on Automated Deduction, 1979.

[GS89a] J. H. Gallier and W. Snyder. Complete sets of transformations for general E-
unification. Theoretical Computer Science 67, pp. 203-260, 1989.

[GS89b] J. H. Gallier and W. Snyder. Higher-order unification revisited: complete sets
of transformations. Journal of Symbolic Computation 8, pp. 101-140, 1989.

[Hin67] R. Hindley. Axioms for strong reduction in combinatory logic. Journal of
Symbolic Computation 32, pp. 224-236, 1967.

[HS86] J. R. Hindley and J. P. Seldin. Introduction to Combinators and A-Calculus,
Cambridge University Press, 1986.

[Hue75] G. Huet. A unification algorithm for typed A-calculus. Theoretical Computer
Science 1, pp. 27-57, 1975.

31

[Hus91] U. Hustadt. A complete transformation system for polymorphic higher-order
unification. Technical Report MPI-1-91-228, Max-Planck-Institut fur Informatik,
Saarbriicken, 1991.

[JK91] J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: a
rule-based study of unification. Computational Logic: Essays in Honour of Alan
Robinson, ed. J. Lassez and G. Plotkin, MIT Press, Cambridge, pp. 257-321,
1991.

[JO91] J.-P. Jouannaud and M. Okada. A computation model for executable higher-
order algebraic specification languages. Proceedings of the Sirth Annual IEEFE
Symposium on Logic in Computer Science, IEEE Press, pp. 350-361, 1991.

[Joh91] P. Johann. Complete Sets of Transformations for Unification Problems.
Dissertation, Wesleyan University, 1991.

[Joh92] P. Johann. Normal Forms in Combinatory Logic. Technical Report, Wesleyan
University, 1992. Submitted, Notre Dame Journal of Formal Logic.

[Klo80] J. W. Klop. Combinatory Reduction Systems. Mathematical Center Tracts 129,
Amsterdam, 1980.

[Ler67] B. Lercher. Strong reduction and normal form in combinatory logic. Journal of
Symbolic Logic 2, pp. 213-223, 1967.

[Mit90] J. Mitchell. Type systems for programming languages. Handbook of Theoretical
Computer Science, Volume B, ed. J. van Leeuwen, MIT Press/Elsevier, pp.365—
458, 1990.

[MM82] A. Martelli and U. Montanari. An efficient unification algorithm. ACM
Transactions on Programming Languages and Systems 4, pp. 258-282, 1982.

[Nip90] T. Nipkow. Higher-order unification, polymorphism, and subsorts. Eztended
Abstracts, The Second International Workshop on Conditional and Typed
Rewriting Systems, Center for Pattern Recognition and Machine Intelligence,

1990.

[NPS??] P. Narendran, F. Pfenning. and R. Statman. On the unification problem for
cartesian closed categories.

[NQ91] T. Nipkow and Z. Qian. Modular Higher-order E-unification. Proceedings,
Fourth International Conference on Rewriting Techniques and Applications,

Springer-Verlag LNCS 488, pp. 200-214, 1991.

[Oka89] M. Okada. Strong normalizability for the combined system of the typed lambda
calculus and an arbitrary convergent rewrite system. Proceedings, ISSAC 89,

1989.

[PE88] F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proceedings of
SIGPLANSS Symposium on Language Design and Implementation, ACM Press,
pp. 199-208, 1988.

[Pey87] S. L. Peyton-Jones. The Implementation of Functional Programming Languages.
Prentice-Hall, 1987.

32

[Ret87] P. Réty. Improving basic narrowing techniques. Proceedings of the Second
International Conference on Rewriting Techniques and Applications, 1987.

[Sch89] M. Schmidt-Schauss. Unification in a combination of arbitrary disjoint equa-
tional theories. Journal of Symbolic Computation 8, pp. 51-99, 1989.

[Sie89] J. Siekmann. Unification theory. Journal of Symbolic Computation 7, pp. 207—
274, 1989.

[Sny90] W. Snyder. Higher-order E-unification. Proceedings of the Tenth Conference on
Automated Deduction, Springer-Verlag LNAT 449, pp. 292-307, 1990.

[Vri87] R. C. deVrijer. Surjective Pairing and Strong Normalization: Two Themes in
Lambda Calculus. Dissertation, Universiteit van Amsterdam, 1987.

[Vri90] R. C. deVrijer. Unique Normal Forms for Combinatory Logic with Parallel
Conditional, a Case Study in Conditional Rewriting. Internal Report TR-240,
Vrije Universiteit, Amsterdam, 1990.

33

