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Generalized Algebraic Data Types (GADTs) are, as their name suggests, syntactic general-
izations of standard algebraic data types (ADTs) such as list, trees, etc. ADTs are known to
support an initial algebra semantics (IAS) in any category with enough structure [MA86]. This
IAS gives a semantic justification for the syntactic tools ADTs come with: pattern-matching,
recursion rules, induction rules, etc. One of the fundamental properties of an IAS is that the
interpretation of the type constructor defined by an ADT can be extended to a functor whose
action on morphisms interprets the ADT’s syntactic map function.

It is natural to explore a potential generalization of IAS to GADTs. However, mapping func-
tions over elements of GADTs is notorious for being only partially defined [JG08, JC22, JP19].
This compels us to seek the potential generalized semantics in categories with an inherent notion
of partiality.

In this work, we first define a categorical framework which captures a notion of partiality
that is computationally relevant. We consider the main feature of computationally relevant
partiality to be that functions propagate undefinedness. This is akin to how functions that are
strict in the sense of [BHA86] behave. Next, we show that any semantics in this framework
is trivial if we insist that the interpretations of the type constructors defined by GADTs must
extend to functors.

Given a category C, we write Mor(C) for its (possibily large) set of morphisms. Let us start
by recalling a classic definition that categorifies the notion of ideal in monoids.

Definition 1. A cosieve in a category C is a (possibly large) subset S ⊆ Mor(C) such that for
all morphisms f : A→ B and g : B → C in C, if f ∈ S then gf ∈ S.

Recall that a wide subcategory of a category C is a subcategory of C that contains all objects
of C (and thus all identity morphisms as well). Given any subcategory D of C, we denote D for
its complement, i.e., for the (possibly large) set Mor(C) \Mor(D).

Definition 2. A structure of computational partiality on a category C is a wide subcategory
whose complement is a cosieve.

In a category C equipped with a structure of computational partiality D, we call morphisms
of D total and those of D properly partial. The intuition behind Definition 2 is that D is the
collection of partial computations. Following that intuition, both identities and compositions
of total functions must be total functions, and, when a function yields an error on an input
there is no way to come back from the error by postcomposing with another function. Other
categorical frameworks capturing partiality include p-categories [RR88], (bi)categories of partial
maps [Car87], categories of partial morphisms [CO89], and restriction categories [CL02]. These
all give rise to structures of computational partiality.

Lemma 3. In a category equipped with a structure of computational partiality, split monomor-
phisms are always total.

Proof. Let s be a split monomorphism in a category C. Then there exists r such that rs = id.
If s were properly partial in a structure of computational partiality on C, then rs, and thus
id, would be properly partial as well. But id is total by definition, so it cannot be. Thus, s is
total.



Partiality Wrecks GADTs’ Functoriality Cagne and Johann

Now fix a category C equipped with a structure of computational partiality D. Suppose D
has finite products, and write 1 for the terminal object of D. An interpretation J K of (a language
with) GADTs in (C,D) maps each closed type τ of the language to an object JτK of C, and each
function f : τ1 → τ2 → . . . → τn → τ to a total morphism JfK : Jτ1K×Jτ2K×· · ·×JτnK→ JτK
in D. We require that J K maps the unit type > to 1 and compositions of syntactic functions
to the compositions of their interprations in C. Given a n-ary GADT G, a functor G : Cn →
C manifests G relative to J K if the action of G on every object (Jτ1K, . . . , JτnK) is precisely
JG τ1 . . . τnK.

Theorem 4. Let C be a category equipped with structure of computational partiality D. Suppose
J K is an interpretation of GADTs in (C,D) relative to which each GADT can be manifested by
a functor. Then JτK ' 1 for all non-empty closed types τ .

Proof. Among the GADTs in our language, we have

data Equal :: * → * → * where

Refl :: ∀ α. Equal α α

We can use the recursion rule of GADTs to define:

trp :: ∀ {α β}. Equal α β → α → β
trp Refl x = x

trp−1 :: ∀ {α β}. Equal α β → β → α
trp−1 Refl y = y

Instantiating α and β to the closed types τ1 and τ2, respectively, the anonymous function
λ x → trp−1 Refl (trp Refl x) reduces to the identity function on τ1. By the uniqueness
property of functions defined by recursion on GADTs, λ p → (λ x → trp−1 p (trp p x))

reduces to the identity on τ1 for any input p. Semantically this translates to the following
composition being idJτ1K for any morphism p : 1→ JEqual τ1 τ2K in D:

Jtrp−1 {α = τ1} {β = τ2}K◦(p×idJτ2K)◦ϕJτ2K◦Jtrp {α = τ1} {β = τ2}K◦(p×idJτ1K)◦ϕJτ1K

Here, ϕX is the canonical isomorphism X ' 1×X.
Now let τ be a non-empty closed type and t be a closed term of type τ . We abuse notation

and write JtK : 1→ JτK for the morphism Jλ _ → tK in D. Since every morphism with domain
1 in D is a split monomorphism, so is JtK. Since there exists a functor JEqualK : C2 → C
manifesting Equal relative to J K, and since split monomorphisms are preserved by all functors,
JEqualK(JtK, id1) is a split monomorphism as well. By Lemma 3, JEqualK(JtK, id1) is a morphism
in D from JEqual > >K to JEqual τ >K. Consider the following morphisms in D:

s = Jtrp−1 {α = τ} {β = >}K ◦ (p× id1) ◦ ϕ1 : 1→ JτK
r = Jtrp {α = τ} {β = >}K ◦ (p× idJτK) ◦ ϕJτK : JτK→ 1

The observation at the end of the previous paragraph instantiated with τ1 = τ , τ2 = 1 and
p being the morphism JEqualK(JtK, id1) ◦ JRefl {α = >}K in D shows that sr = idJτK. The
composition rs is necessarily id1 because it is in D (i.e., is total), and 1 is terminal in D. This
explicitly gives the isomorphism announced in the statement of the theorem.

The result holds in particular for D = C. In this case, it proves that any naive extension of
IAS for ADTs to GADTs that interprets GADTs as functors on C directly must be trivial.
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