
MANIFESTO FOR AGILE SOFTWARE DEVELOPMENT

We are uncovering better ways of developing software by doing it and helping

others do it. Through this work we have come to value:

INDIVIDUALS AND INTERACTIONS over processes and tools
WORKING SOFTWARE over comprehensive documentation
CUSTOMER COLLABORATION over contract negotiation
RESPONDING TO CHANGE over following a plan

That is, while there is value in the items on the right,

we value the items on the left more.

Kent Beck
Mike Beedle

Arie van Bennekum
Alistair Cockburn
Ward Cunningham

Martin Fowler

James Grenning
Jim Highsmith
Andrew Hunt
Ron Jeffries

Jon Kern
Brian Marick

Robert C. Martin
Steve Mellor

Ken Schwaber
Jeff Sutherland
Dave Thomas

1

AGILE SOFTWARE DEVELOPMENT CONSORTIUM
Representatives from

Extreme Programming

http://www.extremeprogramming.org/

SCRUM
http://www.controlchaos.com/

DSDM
Dynamic Systems Development Method

http://www.dsdm.org/

Adaptive Software Development
http://www.dorsethouse.com/books/asd.html

Crystal
http://crystalmethodologies.org/

Feature-Driven Development
http://www.featuredrivendevelopment.com/

Pragmatic Programming
http://www.pragmaticprogrammer.com/

2

http://www.extremeprogramming.org/
http://www.controlchaos.com/
http://www.dsdm.org/
http://www.dorsethouse.com/books/asd.html
http://crystalmethodologies.org/
http://www.featuredrivendevelopment.com/
http://www.pragmaticprogrammer.com/

PRINCIPLES BEHIND THE AGILE
MANIFESTO

We follow these principles:

• Our highest priority is to satisfy the

customer through early and continuous
delivery of valuable software.

• Welcome changing requirements, even late

in development. Agile processes harness
change for the customer's competitive
advantage.

• Deliver working software frequently, from a

couple of weeks to a couple of months, with
a preference to the shorter timescale.

• Business people and developers must work

together daily throughout the project.

3

• Build projects around motivated individuals.
Give them the environment and support they
need, and trust them to get the job done.

• The most efficient and effective method of

conveying information to and within a
development team is face-to-face
conversation.

• Working software is the primary measure of

progress.

• Agile processes promote sustainable

development. The sponsors, developers, and
users should be able to maintain a constant
pace indefinitely.

• Continuous attention to technical excellence

and good design enhances agility.

• Simplicity--the art of maximizing the

amount of work not done--is essential.

4

• The best architectures, requirements, and
designs emerge from self-organizing teams.

• At regular intervals, the team reflects on

how to become more effective, then tunes
and adjusts its behavior accordingly.

http://www.agilealliance.com/home

5

http://www.agilealliance.com/home

XP’s 12 CORE PRACTICES
1

Customers define application features with user
stories.

2
XP teams put small code releases into

production early.
3

XP teams use a common system of names and
descriptions.

4
Teams emphasize simply written, object-

oriented code that meets requirements.
5

Designers write automated unit tests upfront and
run them throughout the project.

6
XP teams frequently revise and edit the overall

code design, a process called refactoring.

6

7
Programmers work side by side in pairs,

continually seeing and discussing each other’s
code.

8
All programmers have collective ownership of

the code and the ability to change it.
9

XP teams integrate code and release it to a
repository every few hours and in no case hold

on to it longer than a day.
10

Programmers work only 40 hours per week;
there’s no overtime.

11
A customer representative remains on-site

throughout the development project.
12

Programmers must follow a common coding
standard so all the code in the system looks as if

it was written by a single individual.

7

What is Pair Programming?

TWO programmers working side-by-side,

collaborating on the same design, algorithm,

code or test. One programmer, the driver, has

control of the keyboard/mouse and actively

implements the program. The other programmer,

the observer, continuously observes the work of

the driver to identify tactical (syntactic, spelling,

etc.) defects and also thinks strategically about

the direction of the work. On demand, the two

programmers can brainstorm any challenging

problem. Because the two programmers

periodically switch roles, they work together as

equals to develop software.

-- Laurie Williams
North Carolina State University Computer Science

8

CONCLUSION

“All methodologies are based on fear. You try
to set up habits that prevent your fears from
becoming reality.”

KENT BECK

“XP reflects my fears:

Doing work that doesn’t matter •
•

•
•

•

•

Having projects canceled because I didn’t
make enough technical progress
Making business decisions badly
Having business people make technical
decisions badly for me
Coming to the end of a career of building
systems and realizing that I should have
spent more time with my kids
Doing work I’m not proud of”

9

“XP also reflects things I’m not afraid of:

Coding •
•
•

•
•

•

Changing my mind
Proceeding without knowing everything
about the future
Relying on other people
Changing the analysis and design of a
running system
Writing tests

I had to learn not to fear these things.”

10

“…we felt privileged to work with a group of

people who held a set of compatible values, a

set of values based on trust and respect for each

other and promoting organizational models

based on people, collaboration, and building the

types of organizational communities in which

we would want to work. At the core, I believe

Agile Methodologists are really about “mushy”

stuff – about delivering good products …about

the mushy stuff of values and culture.”

Jim Highsmith

For the Agile Alliance
http://www.agilemanifesto.org/history.html

11

http://www.agilemanifesto.org/history.html

More Quotes:

“XP has traditionally worked best in small or

medium-size teams composed of competent

developers who work well together; where the

customer’s requirements may change

frequently; and where frequent small releases

are possible.”

“Five Lessons You Should Learn from Extreme Programming”

1. Code for Maintainability
2. Know your status
3. Communicate early and often
4. Do things that matter
5. Fix your most important problem first

http://www.onlamp.com/lpt/a/4061

12

http://www.onlamp.com/lpt/a/4061

One more Quote:

“One thing that’s good about XP is that it

simplifies things developers don’t classically

like to do, like testing and code review. And

anything that makes developers do that is a

desirable thing. But right now, there isn’t

enough evidence that XP is a breakthrough that

all teams should embrace.”

http://www.computerworld.com/printthis/2001/0,4814,66192,00.html
Computerworld, 2001

13

Another Quote:

“…XP requires unfailing discipline from every

member of the team throughout the project.

This makes it anything but lightweight.

Additionally, the 12 practices are sot tightly

dependent on each other that tailoring XP (or

skipping a few of the practices) can be tricky.”

“The Irony of Extreme Programming”
Matt Stephens and Doug Rosenberg

Dr. Dobb’s Journal, May 2004

14

15

One more quote:

“We can drive ourselves crazy with expectation.

But by preparing for every eventuality we can

think of, we leave ourselves vulnerable to the

eventualities we can’t imagine.”

eXtreme Programming explained: Embrace Change, Kent
Beck, Addison-Wesley, 2000.

