
1

1

Chapter 2
Fundamentals

Chapter 2
Fundamentals

Objectives:
Digital Image Representation
Image as a Matrix
Reading and Displaying Images
Writing Images
Storage Classes and Data Types
Image Coordinate System
Summary of on MATLAB

The images used here are provided by the authors.

2

2.1 Digital Image Representation

2.1.1 Coordinate Conventions

2.1.2 Images as Matrices

2.2 Reading Images

2.3 Displaying Images

2.4 Writing Images

2.5 Data Classes

2.6 Image Types

2.6.1 Intensity Images

2.6.2 Binary Images

2.6.3 A Note on Terminology

Chapter 2
Fundamentals

Chapter 2
Fundamentals

2

3

2.7 Converting between Data Classes and Image Types

2.7.1 Converting between Data Classes

2.7.2 Converting between Image Classes and Types

2.8 Array Indexing

2.8.1 Vector Indexing

2.8.2 Matrix Indexing

2.8.3 Selecting Array Dimensions

4

2.9 Some Important Standard Arrays

2.10 Introduction to M-Function Programming

2.10.1 M-Files

2.10.2 Operators

2.10.3 Flow Control

2.10.4 Code Optimization

2.10.5 Interactive I/O

2.10.6 A Brief Introduction to Cell Arrays and
Structures 62

Summary

3

5

Digital Image FundamentalsDigital Image Fundamentals

Focal length
17 mm to
about 14 mm

Chapter 2
Fundamentals

Chapter 2
Fundamentals

The images used here are provided by the authors.

6

There are 6 to 7 million cones in each eye. Cones are
located at the central portion of the retina. They are
highly color sensitive. We use them to resolve fine
details. Cone vision is called photopic or bright-light
vision.
There are 75-150 million rods distributed over the retinal
surface. Larger area of distribution and the fact that
several of rods are connected to a single nerve, make
them less effective for resolving details. Rod vision is
called scotopic or dim-light vision.

Lens is made of concentric layers of fibrous cells and is
suspended by fibers that attach to the ciliary body. It
contains 60% -70% water, 6% fat, and more protein than
any other tissue in the eye.

4

7The images used here are provided by the authors.

rods

cones

8

Chapter 2
Fundamentals

Chapter 2
Fundamentals

Digital Image Representation
An image can be seen as a two-dimensional function,
f(x,y), where x and y are spatial (plane) coordinates, and
the amplitude of f at any pair of coordinates (x,y) is called
the intensity of the image at that point.

The images used here are provided by the authors.

5

9

This is an M-by-N
image with indices
starting from 0

This is an M-by-N
image with indices
starting from 1
(MATLAB Notation)

Chapter 2
Fundamentals

Chapter 2
Fundamentals

The images used here are provided by the authors.

10

Image as Matrices
The image data can be represented as a matrix in
the following form:

Chapter 2
Fundamentals

Chapter 2
Fundamentals























−−−−

−
−

=

)1,1()1,1()0,1(
.....
.....

)1,1(....)1,1()0,1(
)1,0(....)1,0()0,0(

),(

NMfMfMf

Nfff
Nfff

yxf

The images used here are provided by the authors.

6

11

Each element
(building block) of an
image is called a
pixel. In MATLAB,
the above matrix is
represented as:























=

N)f(M,f(M,2)f(M,1)
.....
.....
N)f(2,....f(2,2)f(2,1)
N)f(1,....f(1,2)f(1,1)

f

This is how you store a 4-by-4 matrix as A in MATLAB:



















=

161284
151173
141062
13951

A
>> A = [1 5 9 13;

2 6 10 14;
3 7 11 15;
4 8 12 16]

12The images used here are provided by the authors.

7

13

Chapter 2
Fundamentals

Chapter 2
Fundamentals

Reading and Displaying Images
In MATLAB images are read using: imread(‘filename’).
This reads the image that is stored in the current directory.
We can include the path to a directory if that is different
from the current directory:

f = imread(‘C:\MATLAB7\toolbox\images\imdemos\football.jpg’)

This reads the image football.jpg from the hard drive and
stores its data in matrix f. It is possible to read images of
different formats as indicated in Table 2.1.

14The images used here are provided by the authors.

8

15

Chapter 2
Fundamentals

Chapter 2
Fundamentals

Reading: >> f = imread(‘kids.tif’);
Displaying: >> imshow(f)

The whos function displays
additional information:

>> whos f
Name Size Bytes Class

f 400x318 127200 uint8 array
Grand total is 127200 elements using 127200 bytes

Reading and Displaying Images

16

To keep the first image and output a second
image, we will use:

>> g = imread(‘trees.tif’);

>> figure, imshow(g)

Now, since you had previously displayed the
kids.tif, both the kids.tif and the trees.tif images
will appear on the screen.

9

17

Chapter 2
Fundamentals

Chapter 2
Fundamentals

Writing Images
Assuming we have read an image already using:
f = imread(‘greens.jpg’).
This is an image in jpg format.
Images are written to disk using function imwrite, which
is used as:
imwrite(f, ‘filename’)
Using this format, the string for filename MUST include a
recognizable file format extension. We can also specify
the desired format using:

>> imwrite(f, ‘greens’, ‘tif’) Or
>> imwrite(f, ‘greens.tif’)

18

We can also write the image with a different quality
defined as q%:

imwrite(f, ‘greens_25.jpg’, ‘quality’, 25), where 25 is
25% quality

greens .tif greens _25.jpg

Note: Quality only applies to images written in JPEG
format because there is a compression associated with this
format. We will discuss this later.

greens .tif

10

19

I used the imfinfo command on the
greens images of 100% and 25%
qualities. Here are the result.
Everything seems to be the same, so
where does the size difference come
from?

Chapter 2
Fundamentals

Chapter 2
Fundamentals

Writing Images

20

K = imfinfo('greens.jpg')
K = Filename: 'greens.jpg'
FileModDate: '01-Mar-2001
09:52:40'
FileSize: 74948
Format: 'jpg'
FormatVersion: ''
Width: 500
Height: 300
BitDepth: 24
ColorType: 'truecolor'
FormatSignature: ''
NumberOfSamples: 3
CodingMethod: 'Huffman'
CodingProcess: 'Sequential'
Comment: {}

K = imfinfo('greens_25.jpg')
K = Filename: 'greens_25.jpg'
FileModDate: '01-Mar-2001
09:52:40'
FileSize: 22497
Format: 'jpg'
FormatVersion: ''
Width: 500
Height: 300
BitDepth: 24
ColorType: 'truecolor'
FormatSignature: ''
NumberOfSamples: 3
CodingMethod: 'Huffman'
CodingProcess: 'Sequential'
Comment: {}

11

21

Chapter 2
Fundamentals

Chapter 2
Fundamentals

>> K=imfinfo('greens.jpg');
>> img_bytes = K.Width*K.Height*K.BitDepth/8;
>> compressed_bytes = K.FileSize;
>> compression_ratio = img_bytes/compressed_bytes

compression_ratio =
6.0042

Writing Images – how much we gained how much we
lost?

22

>> K=imfinfo('greens_25.jpg');
>> img_bytes = K.Width*K.Height*K.BitDepth/8;
>> compressed_bytes = K.FileSize;
>> compression_ratio = img_bytes/compressed_bytes

compression_ratio =
20.0027

12

23

What is the size of a 16X16 gray scale image in bits? This
image contains 64 gray levels.

24

Chapter 2
Fundamentals

Chapter 2
Fundamentals

The images used here are provided by the authors.

Writing Images

13

25

Chapter 2
Fundamentals

Chapter 2
Fundamentals

The images used here are provided by the authors.

Writing Images

26

By default, MATLAB stores most data in arrays of class double.
The data in these arrays is stored as double-precision (64-bit)
floating-point numbers. All MATLAB functions work with these
arrays.
For image processing, however, this data representation is not
always ideal. The number of pixels in an image can be very
large; for example, a 1000-by-1000 image has a million pixels.
Since each pixel is represented by at least one array element,
this image would require about 8 megabytes of memory.
To reduce memory requirements, MATLAB supports storing
image data in arrays as 8-bit or 16-bit unsigned integers, class
uint8 and uint16. These arrays require one eighth or one fourth
as much memory as double arrays.

Chapter 2
Fundamentals

Chapter 2
Fundamentals

Storage Classes

14

27The images used here are provided by the authors.

Data Classes

28

Converting between Image Classes and types

>> f = [-0.5 0.5; 0.75 1.5]
f =
-0.5 0.5
0.75 1.5
>> g = uint8(f)
g =
0 1
1 2

15

29

Chapter 2
Fundamentals

Chapter 2
Fundamentals

The Image Processing Toolbox supports four basic
types of images:

• Indexed images
• Intensity images
• Binary images
• RGB images

Reading a Graphics Image
Writing a Graphics Image
Querying a Graphics File
Converting Image Storage Classes
Converting Graphics File Formats
Reading and Writing DICOM Files

30

Indexed Images

An indexed image consists of an array, called X in this
documentation, and a colormap matrix, called map. The pixel
values in the array are direct indices into a colormap.
The colormap matrix is an m-by-3 array of class double
containing floating-point values in the range [0,1]. Each row of
map specifies the red, green, and blue components of a single
color. An indexed image uses direct mapping of pixel values
to colormap values. The color of each image pixel is
determined by using the corresponding value of X as an
index into map.

16

31The images used here are provided by the authors.

32

An intensity image, also known as a grayscale image,
is a data matrix, I, whose values represent intensities
within some range. MATLAB stores an intensity
image as a individual matrix, with each element of the
matrix corresponding to one image pixel. The matrix
can be of class uint8, uint16, int16, single, or
double.While intensity images are rarely saved with a
colormap, MATLAB uses a colormap to display them.
For a matrix of class single or double, using the default
grayscale colormap, the intensity 0 represents black
and the intensity 1 represents white. For a matrix of
type uint8, uint16, or int16, the intensity intmin(class(I))
represents black and the intensity intmax(class(I))
represents white.

Intensity images

17

33The images used here are provided by the authors.

34

In a binary image, also known as a bilevel image, each pixel
assumes one of only two discrete values: 1 or 0. A binary
image is stored as a logical array.

Binary images

The images used here are provided by the authors.

18

35

A truecolor image, also known as an RGB image, is
stored in MATLAB as an m-by-n-by-3 data array
that defines red, green, and blue color components
for each individual pixel. Truecolor images do not
use a colormap. The color of each pixel is
determined by the combination of the red, green,
and blue intensities stored in each color plane at
the pixel's location. Graphics file formats store
truecolor images as 24-bit images, where the red,
green, and blue components are 8 bits each. This
yields a potential of 16 million colors. The precision
with which a real-life image can be replicated has
led to the commonly used term truecolor image.

RGB images

36

The images used here are provided by the authors.

19

37

Spatial Coordinates

Pixel Coordinates
Coordinate Systems

The images used here are provided by the authors.

38

P2
Created by Paint Shop Pro 6
4 4
16
15 3 2 13
5 10 11 8
9 6 7 12
4 15 14 15

A sample PGM image:

20

39

Accessing Matrix Elements
• Subscripts

– Uses parentheses to indicate subscripts
– A(1,4) + A(2,4) + A(3,4) + A(4,4) returns 34

• Out of range indices
– Trying to read an element out of
range produces an error message
– Trying to assign a value to an

element out of range expands the matrix !!

A(5,4) = 17 produces

16 3 2 13 0
5 10 11 8 0
9 6 7 12 0
4 15 14 1 17

Chapter 2
Fundamentals

Chapter 2
Fundamentals

40

The Colon Operator

• Examples
– 1:5 produces 1 2 3 4 5
– 20:-3:0 produces 20 17 14 11 8 5 2
– 0:pi/4:pi produces 0 0.7854 1.5708 2.3562 3.1416

• Accessing portions of a matrix
– A(1:k,j) references the first k elements in the j column
– A(:,end) references all elements in the last column
– How could you reference all elements in the last row?

Chapter 2
Fundamentals

Chapter 2
Fundamentals

21

41

>> f = imread('kids.tif');
>> imshow(f)

>> fp = f(end:-1:1, :);
This command, flips the image vertically

>> imshow(fp)

Chapter 2
Fundamentals

Chapter 2
Fundamentals

Example:Example:

42

22

43

>> fc = f(100:300, 100:300);
This cuts the pixels from 100 to 300 out from
the original image, f.
>> imshow(fc)

>> fs = f(1:2:end, 1:2:end);
This command create a subsampled
image shown below.
>> imshow(fs)

Chapter 2
Fundamentals

Chapter 2
Fundamentals

Example:Example:

44

23

45

>> plot(f(200,:))
This plots a horizontal scan line
through row 200, almost the
middle.

0 200 400
0

10

20

30

40

50

60

The images used here are provided by the authors.

46

Expressions and Functions

• Expressions and functions obey algebraic rules
z = sqrt(besselk(4/3,rho-i))
z = 0.3730+ 0.3214i

• Some important constant functions

Chapter 2
Fundamentals

Chapter 2
Fundamentals

24

47

48

>> Z=zeros(2,4)

Z =

0 0 0 0
0 0 0 0

>> F = 5 * ones(3,3)

F =

5 5 5
5 5 5
5 5 5

Generating Matrices

25

49

>> N = fix(10*rand(1,10))

N =

9 2 6 4 8 7 4 0 8 4
>> R = rand(4,4)

R =

0.6154 0.1763 0.4103 0.8132
0.7919 0.4057 0.8936 0.0099
0.9218 0.9355 0.0579 0.1389
0.7382 0.9169 0.3529 0.2028

50

• Concatenation, using our
magic square A

Chapter 2
Fundamentals

Chapter 2
Fundamentals



















=

114155
12769
811105

132316

A

26

51

• This isn’t a magic square but the columns
add up to the same value

52

Various Matrix Operations - 2

Deleting rows and columns
– A(: , 2) = [] removes the second column
– How would you remove the last row?
– Single elements can only be removed from

vectors
• Some operations with transpose

Chapter 2
Fundamentals

Chapter 2
Fundamentals



















=

114155
12769
811105

132316

A

27

53

•If you tried to apply the determinant operation,
you would find det(A) = 0, so this matrix is not
invertible; if you tried inv(A) you would get an
error

54

Various Matrix Operations - 3
• The eigenvalue contains a

0, indicating singularity

Chapter 2
Fundamentals

Chapter 2
Fundamentals

28

55

• P = A/34 is doubly stochastic, as shown above
• P^5 (raised to the fifth power) converges towards

¼, as k in p^k gets larger the values approach ¼

56

Array Operations

Chapter 2
Fundamentals

Chapter 2
Fundamentals

29

57

• For example, to square the elements of A, enter
the expression A.*A

58

Building Tables

• An example
Let n = (0:9)’
Let pows = [n n.^2 2.^n]

Chapter 2
Fundamentals

Chapter 2
Fundamentals

30

59

Another example

60

Programming in MATLAB
• Control structures

– Selection (if and switch)
– Repetition (for, while, break, continue)
– Other (try … catch, return)

• Dynamic Structures
• Scripts and M files
• User defined functions
• Two examples

– Finding the periodicity of sunspots
– Multiplying polynomials using FFT

Chapter 2
Fundamentals

Chapter 2
Fundamentals

31

61

The if command

Chapter 2
Fundamentals

Chapter 2
Fundamentals

62

Useful Boolean
tests for matrices

• An example

32

63

The switch command

• Note: the break command in C++ is not
required in MATLAB

Chapter 2
Fundamentals

Chapter 2
Fundamentals

64

Commands for repetition

• The for command (notice the required ‘end’)

Chapter 2
Fundamentals

Chapter 2
Fundamentals

33

65

• The while command (also requires ‘end’)

Does anyone
recognize what
this code
fragment does?

66

Continue and Break
• The continue command
What does this code fragment do?

Chapter 2
Fundamentals

Chapter 2
Fundamentals

34

67

• The break command
Here is the finding the solution of a polynomial using
bisection; why is the ‘break’ command an
improvement?

68

try … catch and return

• The return command
• Terminates execution
• If inside a user defined function, returns to the

calling environment
• Otherwise returns to keyboard input

You can examine the error using lasterr

An error in the exception handler
causes the program to terminate

Chapter 2
Fundamentals

Chapter 2
Fundamentals

