Chapter 2
Fundamentals

The images used here are provided by the authors.

Objectives:
Digital Image Representation
Image as a Matrix
Reading and Displaying Images
Writing Images
Storage Classes and Data Types
Image Coordinate System
Summary of on MATLAB

Chapter 2
Fundamentals
2.1 Digital Image Representation

2.1.1 Coordinate Conventions
2.1.2 Images as Matrices
2.2 Reading Images
2.3 Displaying Images
2.4 Writing Images
2.5 Data Classes
2.6 Image Types
2.6.1 Intensity Images
2.6.2 Binary Images
2.6.3 A Note on Terminology

2.7 Converting between Data Classes and Image Types
2.7.1 Converting between Data Classes
2.7.2 Converting between Image Classes and Types
2.8 Array Indexing
2.8.1 Vector Indexing
2.8.2 Matrix Indexing

2.8.3 Selecting Array Dimensions

2.9 Some Important Standard Arrays
2.10 Introduction to M-Function Programming
2.10.1 M-Files
2.10.2 Operators
2.10.3 Flow Control
2.10.4 Code Optimization
2.10.5 Interactive I/O

2.10.6 A Brief Introduction to Cell Arrays and
Structures 62

Summary

Digital Image Fundamentals Chapter 2
Fqugmentals

Cornea

Ciliary muscle

The images used here are provided by the authofs.

There are 6 to 7 million cones in each eye. Cones are
located at the central portion of the retina. They are
highly color sensitive. We use them to resolve fine
details. Cone vision is called photopic or bright-light
vision.

There are 75-150 million rods distributed over the retinal
surface. Larger area of distribution and the fact that
several of rods are connected to a single nerve, make
them less effective for resolving details. Rod vision is
called scotopic or dim-light vision.

Lens is made of concentric layers of fibrous cells and is
suspended by fibers that attach to the ciliary body. It
contains 60% -70% water, 6% fat, and more protein than
any other tissue in the eye. 6

180.000 T T T FIGURE 2.2
Distribution of
rods and cones in
the retina.

135,000

90,000

No. of rods or cones per mm?

45,000

Degrees from visual axis (center of fovea)

The images used here are provided by the authofls.

Chapter 2
Fundamentals

Digital Image Representation

An image can be seen as a two-dimensional function,
f(x,y), where x and y are spatial (plane) coordinates, and
the amplitude of fat any pair of coordinates (x,y) is called
the intensity of the image at that point.

The images used here are provided by the authors.

This is an M-by-N
image with indices
starting from 0

Chapter 2

Fundamentals

01 2---- e N1 1 2 3.... ... N

0

14 o « s + 2 s « s« o s 24 s s+ 2 = = 2 2 o+ = =

2 T T T T T T T
A — 1% o o o « o s o s s« o Mt e e s s = s+ & = s

\ One pixel — One pixel —

X r

This is an M-by-N
image with indices
starting from 1
(MATLAB Notation) ,

The images used here are provided by the authors.

Chapter 2
Fundamentals

Image as Matrices

The image data can be represented as a matrix in

the following form:

fxy)=

The images used here are provided by the authors.

1(0,0) 7.
/(1,0) JAR)

(M -10) f(M-L])

f(O,N -1)
f(A,N-1)

SM-1,N-1)]

Each element _ _
(building block) of an fLLy 11.2) .. 41N
image is called a fzh) 122 .. . f2N)
pixel. In MATLAB, '~
the above matrix is

fM,1) f(M2) f(M, N) |

represented as:
This is how you store a 4-by-4 matrix as A in MATLAB:
b9 b A=[15913
>> A= ;
A=2 6 10 14 2610 14:
3 7 11 15 3711 15;
4 8 12 16] 4812 16]

ab

FIGURE 2.17 (a) Continuos image projected onto a sensor arrayv. (b) Result of image
sampling and quantization.
The images used here are provided by the authors:

Chapter 2
Fundamentals

Reading and Displaying Images

In MATLAB images are read using: imread(‘filename”).
This reads the image that is stored in the current directory.
We can include the path to a directory if that is different

from the current directory:

f =imread(‘C:\MATLAB7\toolbox\images\imdemos\football.jpg’)

This reads the image football.jpg from the hard drive and
stores its data in matrix f. It is possible to read images of

different formats as indicated in Table 2.1.

Format Recognized
Name Description Extensions
TIFF Tagged Image File Format Jtif, Jtiff
JPEG Joint Photographic Experts Group .jpg. .jpeg
GIF Graphics Interchange Format” .gif
BMP Windows Bitmap .bmp
PNG Portable Network Graphics .png
XWD X Window Dump . xwd

GIF is supported by imread, but not by imwrite.

The images used here are provided by the authors.

Chapter 2
Fundamentals
Reading and Displaying Images
Reading: >> { = imread(‘kids.tif”)
Displaying: >> imshow(f)

The whos function displays
additional information:

>> whos f
Name Size Bytes Class

f 400x318 127200 uint8 array

Grand total is 127200 elements using 127200 bytes

) Flgure L]
Fia Fel Vene loserl Took Dwshiop Weskow Heip

NeE@ds K AaN® 08 «0

[i=2]i)

To keep the first image and output a second

image, we will use:
>> g = imread(‘trees.tif’);

>> figure, imshow(g)

Now, since you had previously displayed the
kids.tif, both the kids.tif and the trees.tif images

will appear on the screen.

Chapter 2
Fundamentals

Writing Images

Assuming we have read an image already using:

f = imread(‘greens.jpg’).

This is an image in jpg format.

Images are written to disk using function imwrite, which
is used as:

imwrite(f, ‘filename’)

Using this format, the string for filename MUST include a
recognizable file format extension. We can also specify
the desired format using:

>> imwrite(f, ‘greens’, ‘tif’) Or
>> imwrite(f, ‘greens.tif’) 17

We can also write the image with a different quality
defined as q%:

imwrite(f, ‘greens_25.jpg’, ‘quality’, 25), where 25 is
25% quality

Note: Quality only applies to images written in JPEG
format because there is a compression associated with this

format. We will discuss this later. s

Chapter 2

Fundamentals

Writing Images

I used the imfinfo command on the
greens images of 100% and 25%
qualities. Here are the result.
Everything seems to be the same, so
where does the size difference come

from?

K = imfinfo('greens.jpg")

K = Filename: 'greens.jpg'
FileModDate: '01-Mar-2001
09:52:40'

FileSize: 74948

Format: 'jpg'
FormatVersion: "

Width: 500

Height: 300

BitDepth: 24

ColorType: 'truecolor’
FormatSignature: "
NumberOfSamples: 3
CodingMethod: 'Huffman'
CodingProcess: 'Sequential'
Comment: {}

K = imfinfo('greens_25.jpg")
K = Filename: 'greens_25.jpg’
FileModDate: '01-Mar-2001
09:52:40'
FileSize: 22497
Format: 'jpg'
FormatVersion: "
Width: 500
Height: 300
BitDepth: 24
ColorType: 'truecolor’
FormatSignature: "
NumberOfSamples: 3
CodingMethod: 'Huffman'
CodingProcess: 'Sequential'
Comment: {}

20

Chapter 2
Fundamentals

Writing Images — how much we gained how much we
lost?

>> K=imfinfo('greens.jpg');

>>1mg_bytes = K.Width*K.Height*K.BitDepth/§;
>> compressed bytes = K.FileSize;

>> compression_ratio = img_bytes/compressed bytes

compression_ratio =
6.0042

21

>> K=imfinfo('greens 25.jpg');

>>img_bytes = K.Width*K.Height*K.BitDepth/S;
>> compressed bytes = K.FileSize;

>> compression_ratio = img_bytes/compressed bytes

compression_ratio =
20.0027

22

What is the size of a 16X16 gray scale image in bits? This
image contains 64 gray levels.

23

Chapter 2
Fundamentals

ab
o clld
e f

FIGURE 2.4

(a) Original image.
(b) through

(f) Results of using
jpg quality values
q=50,25,15,5,
and 0, respectively.
False contouring
begins to be barely
noticeable for

q =15 [image (d)]
but is quite visible
for g=5 and

g=0.

Writing Images

)

The images.used here are provided by the authors. 2

Chapter 2
Writing Images Fundamentals

a
b

FIGURE 2.5
Effects of
changing the dpi
resolution while
keeping the
number of pixels
constant.
(a) A 450 x 450
image at 200 dpi
(size = 2.25 X
2.25 inches).
(b) The same
450 % 450 image,
but at 300 dpi
(size = 1.5 X
1.5 inches).
(Original image
courtesy of Lixi,
-~ Inc.)
The images. used here are provided by the authors.

25

Chapter 2
Fundamentals
Storage Classes

By default, MATLAB stores most data in arrays of class double.
The data in these arrays is stored as double-precision (64-bit)
floating-point numbers. All MATLAB functions work with these
arrays.

For image processing, however, this data representation is not
always ideal. The number of pixels in an image can be very
large; for example, a 1000-by-1000 image has a million pixels.
Since each pixel is represented by at least one array element,
this image would require about 8 megabytes of memory.

To reduce memory requirements, MATLAB supports storing
image data in arrays as 8-bit or 16-bit unsigned integers, class
uint8 and uint16. These arrays require one eighth or one fourth

as much memory as double arrays.
26

Data Classes

Name Description

double Double-precision, floating-point numbers in the approximate
range —10°% to 10’ (8 bytes per element).

uints Unsigned 8-bit integers in the range |0, 255] (1 byte per element).

uint16 Unsigned 16-bit integers in the range [0, 65535] (2 bytes per
element).

uint32 Unsigned 32-bit integers in the range [0, 4294967295] (4 bytes
per element).

int8 Signed 8-bit integers in the range [—128, 127] (1 byte per element).

int16 Signed 16-bit integers in the range [—32768, 32767] (2 bytes per
element).

int32 Signed 32-bit integers in the range [—2147483648, 2147483647]
(4 bytes per element).

single Single-precision floating-point numbers with values in the
approximate range —10% to 10* (4 bytes per element).

char Characters (2 bytes per element).

logical Values are 0 or 1 (1 byte per element).

The images.used here.are provided by the authors.

Converting between Image Classes and types

Name Converts Input to: Valid Input Image Data Classes
im2uint8 uints logical,uint8,uint16, and double
im2uint16 uinti1é logical,uint8,uint16, and double
mat2gray double (in range [0,1]) double
im2double double logical,uint8,uint16, and double
im2bw logical uint8,uint16, and double

>>f=1[-0.5 0.5;0.75 1.5]
f=

-0.50.5

0.75 1.5

>> o = uint§(f)

g=

01

12

28

Chapter 2
Fundamentals

The Image Processing Toolbox supports four basic
types of images:

* Indexed images

* Intensity images

 Binary images

* RGB images

Reading a Graphics Image

Writing a Graphics Image
Querying a Graphics File
Converting Image Storage Classes
Converting Graphics File Formats
Reading and Writing DICOM Files

29

Indexed Images

An indexed image consists of an array, called X in this
documentation, and a colormap matrix, called map. The pixel
values in the array are direct indices into a colormap.

The colormap matrix is an m-by-3 array of class double
containing floating-point values in the range [0,1]. Each row of
map specifies the red, green, and blue components of a single
color. An indexed image uses direct mapping of pixel values
to colormap values. The color of each image pixel is
determined by using the corresponding value of X as an
index into map.

30

0
14 17 21 21 53 53

5 8C5)8 10 30 15

15 18|31 31 18 1§

31 31 3

| 0.0827 0.0827 0.0314
0.2802
0 1.0000

[=]
(=]
(=]
-
-
(=]

. 2002 0. 0. 0627
0.3882 . 0. 0941
0.4510 0.0627 0

. 0.2588 0

. 1608 0.0627

Image Courtesy of Susan Cohen

The images.used here.are provided by the authors. 3

Intensity images

An intensity image, also known as a grayscale image,
is a data matrix, I, whose values represent intensities
within some range. MATLAB stores an intensity
image as a individual matrix, with each element of the
matrix corresponding to one image pixel. The matrix
can be of class uint8, uint16, intl6, single, or
double.While intensity images are rarely saved with a
colormap, MATLAB uses a colormap to display them.
For a matrix of class single or double, using the default
grayscale colormap, the intensity O represents black
and the intensity 1 represents white. For a matrix of
type uint8, uint16, or intl16, the intensity intmin(class(I))
represents black and the intensity intmax(class(I))
represents white. 32

T 0.2563 0.2826 0.2826 T3

0.5342 0.2051 0.2157 0.2826 0.3822 0.4391 0,438

0.5342 0.178% 0.1307 0.1789 0.2051 0.3256 0,248

0.4308 0.2483 0.2624 10,3344 0.3344 0.2624 10,2543
J344 0.2624 0.3344 0.3344 0.3 =

The images.used here are provided by the authors. 3

Binary images

In a binary image, also known as a bilevel image, each pixel
assumes one of only two discrete values: 1 or 0. A binary
image is stored as a logical array.

il R
il R
e il i e L R

The images used here are provided by the authors. 34

RGB images

A truecolor image, also known as an RGB image, is
stored in MATLAB as an m-by-n-by-3 data array
that defines red, green, and blue color components
for each individual pixel. Truecolor images do not
use a colormap. The color of each pixel is
determined by the combination of the red, green,
and blue intensities stored in each color plane at
the pixel's location. Graphics file formats store
truecolor images as 24-bit images, where the red,
green, and blue components are 8 bits each. This
yields a potential of 16 million colors. The precision
with which a real-life image can be replicated has
led to the commonly used term truecolor image. ss

77235 0.1224 Blue 0.4

04 0.2002 0.0627 0.2002 0.2002 O.F
0.5804 0.0627 0.0627 0.0627 0.2235 0.2588
75176 0.1922 0.0627 Green 0.1922 0.2588 0.2588
(f)/.sws 0.1294 0.1608 0.1294 0.1294 0.2588 0.2588(0
0.5176 0.1608 0.0627 0.1608 0.1922 0.2588 0.2588
.5490 0.2235 0.5490 Red 0.7412 0.7765 0.7765 |202
5490 0.3882 0.5176 0.5804 0.5804 0.7765 0.7765 [196
490 0.2588 0.2902 0.2588 0.2235 0.4824

X 0.2235 0.1608 0.2588 0.2588 0.1608
88 0.2588 0.2588 0.2588

36
The images used here are provided by the authors.

Pixel Coordinates
Coordinate Systems

1

.58 1 1.5 & 2.5 3 3.5
L ; 1 ; 1 -

]

0.5

LT T L

Spatial Coordinates

"""""""""""""""

The images used here are provided by the authors.

A sample PGM image:

P2

Created by Paint Shop Pro 6
44

16

1532 13

51011 8

96 712

41514 15

38

Chapter 2
Fundamentals

Accessing Matrix Elements
* Subscripts

— Uses parentheses to indicate subscripts

- A(1,4)+AQ24)+ A(3,4) + A(4,4) returns 34
» Out of range indices

— Trying to read an element out of 16 32 13 0
range produces an error message 510 11 8 O

Tg : tu - lue t ¢ 9 6 712 O
— Trying to assign a value to an 4 15 14 I

element out of range expands the matrix !! ’

A(5,4)=17 produces

39

Chapter 2
Fundamentals

The Colon Operator

» Examples

—1:5 produces 1 2 3 45

—20:-3:0 produces 20 17 14 11 8 5 2

— 0:pi/4:p1 produces 0 0.7854 1.5708 2.3562 3.1416
* Accessing portions of a matrix

— A(1:k,j) references the first k elements in the j column

— A(:,end) references all elements in the last column

— How could you reference all elements in the last row?

40

Example: Chapter 2
Fundamentals

>> f = imread('kids.tif");
>> imshow(f)

>> fp = f(end:-1:1, :);
This command, flips the image ve

>> imshow(fp)

42

Example: Chapter 2
Fundamentals

>> fc = f(100:300, 100:300);

This cuts the pixels from 100 to 300 out from
the original image, f.

>> imshow(fc)

>>fs = f(1:2:end, 1:2:end);

This command create a subsampled
image shown below.

>> imshow(fs)

44

>> plot(f(200,:))
This plots a horizontal scan line

through row 200, almost the
middle.

60

50

40 u
30

20

10

0 W LOIT b

200 400

. 0
The images.used here are provided by the authors.

Chapter 2
Fundamentals

Expressions and Functions

Expressions and functions obey algebraic rules
z = sqrt(besselk(4/3,rho-1))
z= 0.3730+0.3214i

Some important constant functions

46

pi

i

]

eps
realmin
realmax

Inf

MNaM

3.14159265...
Imaginary unit, 1
Same as i

Floating-point relative precision, € = 2
2

Smallest floating-point number, 2 1oz

Largest floating-point number, (2 22}21033
Infinity

Not-a-number

47

>> 7Z=7zeros(2,4)

Z:

0
0
>>

o O

F=5

Generating Matrices

0
0

ones(3,3)

48

>> N = fix(10*rand(1,10))
N =

9 2 6 4 8 7 4 0 8 4
>> R =rand(4,4)

R:
0.6154 0.1763 0.4103 0.8132
0.7919 0.4057 0.8936 0.0099
0.9218 0.9355 0.0579 0.1389
0.7382 09169 0.3529 0.2028 49
Chapter 2) .
Fundamentals (16 3 2 13
* Concatenation, using our | > 10 11 8
magic square A 9 6 7 12
B = [A A+32; A+48 A+16] _5 15 14 1_

The result is an 8-by-8 matrix, obtained by joining the four submatrices.

B =

16 3 2 13 48 35 34 45
5 10 11 8 37 42 43 40
9 6 7 12 41 38 39 44
4 15 14 1 36 47 46 33

64 51 50 61 32 19 18 29

53 58 59 56 21 26 27 24

57 54 55 60 25 22 23 28

52 63 62 49 20 31 30 17

 This isn’t a magic square but the columns
add up to the same value

sum(B)

ans =
260 260 260 260 260 260 260 260

51

Chapter 2
Fundamentals [16 3 2 13
Various Matrix Operations - 2 5 10 11 8
=l 6 7 12
5 15 14 1

Deleting rows and columns
—A(:,2)=[] removes the second column
— How would you remove the last row?

— Single elements can only be removed from
vectors

» Some operations with transpose

52

*If you tried to apply the determinant operation,
you would find det(A) = 0, so this matrix is not
invertible; if you tried inv(A) you would get an

€rror A+ A
ans =
32 8 11 17
8 20 17 23
11 17 14 26
A'*A 17 23 26 2
ans =
378 212 206 360
212 370 368 206
206 368 370 212
360 206 212 378 5
Chapter 2
Fundamentals
Various Matrix Operations - 3
« The eigenvalue contains a e = eig(A)
0, indicating singularity o -
34.0000
8.0000
0.0000
-8.0000
P =
0.4706 0.0882 0.0588 0.3824
0.1471 0.2941 0.3235 0.2353
0.2647 0.1765 0.2059 0.3529

0.1176 0.4412 0.4118

0.0294

» P = A/34 is doubly stochastic, as shown above

» P75 (raised to the fifth power) converges towards
Y4, as k in p”k gets larger the values approach Y4

0.2507 0.2495 0.2494 0.2504

0.2497 0.2501 0.2502 0.2500

0.2500 0.2498 0.2499 0.2503

0.2496 0.2506 0.2505 0.2493
Chapter 2

Fundamentals

Array Operations

+

Addition
Subtraction

Element-by-element multiplication

o Element-by-element division

A Element-by-element left divigion

Element-by-element power

Unconjugated array transpose

* For example, to square the elements of A, enter
the expression A.*A

256 9 4 169
25 100 121 64
81 36 49 144

16 225 196]
Chapter 2
Fundamentals
Building Tables
pows

* An example
Letn=(0:9)
Letpows=[n n*2 2.”n]

O o =~ 00 ;M & W = O
M
o
L
Mo

format short ¢
¥ = (1:0.1:2)";
logs = [x logl10(x)]

logs
Another example
.04139
.07918
.11304
.14613
17609
.20412
.23045
. 25527
.27875
.30103

[I Co e « L N = 5 B | s R ™
oo ocoooooo

Chapter 2
Fundamentals

Programming in MATLAB

Control structures

— Selection (if and switch)

— Repetition (for, while, break, continue)
— Other (try ... catch, return)

Dynamic Structures

Scripts and M files

User defined functions

* Two examples
— Finding the periodicity of sunspots
— Multiplying polynomials using FFT

60

Chapter 2
Fundamentals

The if command

if rem(n,2) -= 0

i
elsei

I
olse

i
and

.IZ

odd_magicin)
rem{n,4) -= 0
single _even_magicin)

double_even_magic{n)

* An example

if A =B
'greater’

glseif A = B
'less’

elseif A == B

'equal’
else

Useful Boolean
tests for matrices

error{'Unexpected situation')

end

isequal
isempty
all
any

62

Chapter 2

The switch command Fundamentals
switch (rem(n,4)==0) + (rem(n,2)==0)
case 0
M = odd_magic(n)
case 1
M = single even_magic(n)
case 2
M = double_even_magic(n)

otherwise
error('This is impossible')
end

* Note: the break command in C++ 1s not
required in MATLAB

63

Chapter 2
Fundamentals

Commands for repetition

e The for command (notice the required ‘end’)

for 1 = 1:m
for j = 1:n
H(1,7)
end
end

64

e The while command (also requires ‘end’)

a=0; fa = -Inf;

h =3, fb = Inf, Does anyone
while b-a = eps*b recognize what
X = (a+h)/2; this code

fX = X"3-2%x-5: fragment does?
if signifx) == sign(fa)

a = x, fa = fx;
else

b =x; fb = fx;
end

and
65
Chapter 2

. Fundamentals
Continue and Break

* The continue command
What does this code fragment do?

fid = fopen{'magic.m','r';);
count = 0;
while -~feofi{fid)
line = fgetl(fid);
if isemptyi{line) | strncmpiline,'s",1)
continue
end
count = count + 1,
and
dispisprintf('%d lines',count));

e The break command

Here is the finding the solution of a polynomial using
bisection; why is the ‘break’ command an
improvement?

a=0; fa = -Inf;

b =3; fb = Inf;

while b-a = eps*b

X = (a+h)/2;
fx = x°3-2*%x-5;
if fx == 0
break
elseif signifx) == sign(fa)
a = x; fa = fx;
else
b = x; fb = fx;
end
end 67
Chapter 2
Fundamentals
try
statement try ... catch and return
statement You can examine the error using lasterr
catch
sratement An error in the exception handler
T causes the program to terminate
statement
end

 The return command
* Terminates execution

* If inside a user defined function, returns to the
calling environment

» Otherwise returns to keyboard input

