Student, House, and Car Loans

- words with mort are often deadly & among them are: mortgage="death pledge" amortize a debt=to "kill the debt"
- events described all actually happened and the same language is purposely used
- when our own future is at stake, most of us want to use every approach we can—many cases require the critical and creative analysis of a variety of interpretations in order to fully consider the implications

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

 notice the loan rates are higher than the savings rates, factoring in risk

Loan Payments lender earns what it could elsewhere, we pay in installments: lump sum of loan = periodic payment of our installments

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Loan Payments lender earns what it could elsewhere, we pay in installments: lump sum of loan = periodic payment of our installments loan $(1 + r)^n = \frac{\text{installment payment}((1 + r)^n - 1)}{(\text{like } \frac{.05}{12})}$ r = periodic rate (like $\frac{.05}{12}$) rn = # times actually compounded (like 120 or 360)

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Loan Payments lender earns what it could elsewhere, we pay in installments: lump sum of loan = periodic payment of our installments loan $(1 + r)^n = \frac{\text{installment payment}((1 + r)^n - 1)}{(\text{like } \frac{.05}{12})}$ r = periodic rate (like $\frac{.05}{12}$) rn = # times actually compounded (like 120 or 360)

1. solve for payment by reciprocals, exponents, and distribution. First mult both sides by reciprocal $\frac{r}{(1+r)^n-1}$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Loan Payments lender earns what it could elsewhere, we pay in installments: lump sum of loan = periodic payment of our installments loan $(1 + r)^n = \frac{\text{installment payment}((1 + r)^n - 1)}{\text{(like } \frac{.05}{12})}$ $r = \text{periodic rate (like } \frac{.05}{12})$ n = # times actually compounded (like 120 or 360)

1. solve for payment by reciprocals, exponents, and distribution. First mult both sides by reciprocal $\frac{r}{(1+r)^n-1}$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

installment payment = loan $r \frac{(1+r)^n}{(1+r)^n - 1}$

Loan Payments lender earns what it could elsewhere, we pay in installments: lump sum of loan = periodic payment of our installments loan $(1 + r)^n = \frac{\text{installment payment}((1 + r)^n - 1)}{(\text{like } \frac{.05}{12})}$ r = periodic rate (like $\frac{.05}{12}$) rn = # times actually compounded (like 120 or 360)

1. solve for payment by reciprocals, exponents, and distribution. First mult both sides by reciprocal $\frac{r}{(1+r)^n-1}$

installment payment = loan $r \frac{(1+r)^n}{(1+r)^n - 1}$

2. reduce further by multiplying both the numerator and denominator by $(1 + r)^{-n}$ so the top reduces by exponents:

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Loan Payments lender earns what it could elsewhere, we pay in installments: lump sum of loan = periodic payment of our installments loan $(1 + r)^n = \frac{\text{installment payment}((1 + r)^n - 1)}{(1 + r)^n}$ r = periodic rate (like $\frac{.05}{.12}$) rn = # times actually compounded (like 120 or 360)

 solve for payment by reciprocals, exponents, and distribution. First mult both sides by reciprocal ^r
 (1+r)ⁿ-1

installment payment = loan $r \frac{(1+r)^n}{(1+r)^n - 1}$

2. reduce further by multiplying both the numerator and denominator by $(1 + r)^{-n}$ so the top reduces by exponents: = loan $r \frac{(1 + r)^{-n}(1 + r)^n}{(1 + r)^{-n}((1 + r)^n - 1)} = loan r \frac{1}{(1 + r)^{-n}(1 + r)^n - (1 + r)^{-n}}$ Loan Payments lender earns what it could elsewhere, we pay in installments: lump sum of loan = periodic payment of our installments loan $(1 + r)^n = \frac{\text{installment payment}((1 + r)^n - 1)}{\text{(like } \frac{.05}{12})}$ r = periodic rate (like $\frac{.05}{12}$) rn = # times actually compounded (like 120 or 360)

1. solve for payment by reciprocals, exponents, and distribution. First mult both sides by reciprocal $\frac{r}{(1+r)^n-1}$

installment payment = loan $r \frac{(1+r)^n}{(1+r)^n - 1}$

2. reduce further by multiplying both the numerator and denominator by $(1 + r)^{-n}$ so the top reduces by exponents: = loan $r \frac{(1 + r)^{-n}(1 + r)^n}{(1 + r)^{-n}((1 + r)^n - 1)} = loan r \frac{1}{(1 + r)^{-n}(1 + r)^n - (1 + r)^{-n}}$

installment payment = loan $r \frac{1}{1 - (1 + r)^{-n}} =$

Loan Payments lender earns what it could elsewhere, we pay in installments: lump sum of loan = periodic payment of our installments loan $(1 + r)^n = \frac{\text{installment payment}((1 + r)^n - 1)}{\text{installment payment}((1 + r)^n - 1)}$ r = periodic rate (like $\frac{.05}{.12}$) rn = # times actually compounded (like 120 or 360)

1. solve for payment by reciprocals, exponents, and distribution. First mult both sides by reciprocal $\frac{r}{(1+r)^n-1}$

installment payment = loan $r \frac{(1+r)^n}{(1+r)^n - 1}$

2. reduce further by multiplying both the numerator and denominator by $(1 + r)^{-n}$ so the top reduces by exponents: = loan $r \frac{(1 + r)^{-n}(1 + r)^n}{(1 + r)^{-n}((1 + r)^n - 1)} = loan r \frac{1}{(1 + r)^{-n}(1 + r)^n - (1 + r)^{-n}}$

installment payment = loan $r \frac{1}{1 - (1 + r)^{-n}} = \frac{\log n r}{1 - (1 + r)^{-n}}$

Loan Payments and Amortization

 $\frac{\text{loan amount } r}{1 - (1 + r)^{-n}} = \text{ loan payment}$

total paid= payment ×# times compounded - overpayment

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

total interest = total paid - loan

Loan Payments and Amortization

 $\frac{\text{loan amount } r}{1 - (1 + r)^{-n}} = \text{ loan payment}$

total paid= payment ×# times compounded - overpayment

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- total interest = total paid loan
- interest each period on a loan is computed just as in savings:

account balance \times periodic rate

but now we pay it back rather than earn it

Congratulations—Now Feed Me Your Loan Payments!

https://www.brookings.edu/blog/up-front/2020/04/16/whats-the-government-done-to-relieve-student-loan-borrowers-control of the student studen

Dear Sarah J Greenwald

At this time you have a choice of repayment terms for your student loan \$4795.00 at 8% compounded monthly:

Graduated Rep	payment Plan	Level Payment Plan		
# PMTS PMT AMT		# PMTS	PMT AMT	
24 34.05		119	58.18	
24	44.79	1	57.55	
24	58.92			
24	77.50			
23	101.94			
1	96.92			
total	\$ 7607 78	total	\$ 6980 97	

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

student loan \$4795.00 at 8% compounded monthly: installment payment = $\frac{\text{loan } r}{1 - (1 + r)^{-n}}$ = $\frac{4795 \frac{.08}{12}}{(1 - (1 + \frac{.08}{12})^{-120})}$ =

student loan \$4795.00 at 8% compounded monthly:

installment payment =
$$\frac{10 \text{ an } r}{1 - (1 + r)^{-n}}$$

= $\frac{4795 \frac{.08}{12}}{(1 - (1 + \frac{.08}{12})^{-120})} = 58.176581...$

amortization table for level payment plan

mo.	payment	interest paid	principal paid	loan balance
1	58.18	$4795\frac{.08}{.12} = 31.97$	58.18 - 31.97	4795-26.21=4768.79
		balance×periodic rate	payment-int	balance-principal
~				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

2 58.18

student loan \$4795.00 at 8% compounded monthly:

installment payment =
$$\frac{\text{loan } r}{1 - (1 + r)^{-n}}$$

= $\frac{4795\frac{.08}{.12}}{(1 - (1 + \frac{.08}{.12})^{-120})} = 58.176581...$

amortization table for level payment plan

mo.	payment	interest paid	principal paid	loan balance
1	58.18	$4795\frac{.08}{.12} = 31.97$	58.18 - 31.97	4795-26.21=4768.79
		balance×periodic rate	payment-int	balance-principal
2	58.18	$4768.79\frac{.08}{12} = 31.79$		

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

student loan \$4795.00 at 8% compounded monthly:

installment payment =
$$\frac{\text{loan } r}{1 - (1 + r)^{-n}}$$

= $\frac{4795\frac{.08}{.12}}{(1 - (1 + \frac{.08}{.12})^{-120})} = 58.176581...$

amortization table for level payment plan

mo.	payment	interest paid	principal paid	loan balance
1	58.18	$4795\frac{.08}{.12} = 31.97$	58.18 - 31.97	4795-26.21=4768.79
		balance×periodic rate	payment-int	balance-principal
2	58.18	$4768.79\frac{.08}{12} = 31.79$	58.18-31.79	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

student loan \$4795.00 at 8% compounded monthly:

installment payment =
$$\frac{10 \text{ an } r}{1 - (1 + r)^{-n}}$$

= $\frac{4795 \frac{.08}{12}}{(1 - (1 + \frac{.08}{12})^{-120})} = 58.176581...$

amortization table for level payment plan

mo.	payment	interest paid	principal paid	loan balance
1	58.18	$4795\frac{.08}{12} = 31.97$	58.18 - 31.97	4795-26.21=4768.79
		balance×periodic rate	payment-int	balance-principal
2	58.18	$4768.79\frac{.08}{12} = 31.79$	58.18-31.79	4768.79-26.39
			=26.39	=4742 4

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

student loan \$4795.00 at 8% compounded monthly:

installment payment =
$$\frac{10 \text{ an } r}{1 - (1 + r)^{-n}}$$

= $\frac{4795\frac{.08}{.12}}{(1 - (1 + \frac{.08}{.12})^{-120})} = 58.176581...$

amortization table for level payment plan

no.	payment	interest paid	principal paid	loan balance
1	58.18	$4795\frac{.08}{12} = 31.97$	58.18 - 31.97	4795-26.21=4768.79
		balance×periodic rate	payment-int	balance-principal
2	58.18	$4768.79 \frac{.08}{12} = 31.79$	58.18-31.79 =26.39	4768.79–26.39 =4742.4

last months payment: 58.18 - .63 = 57.55

student loan \$4795.00 at 8% compounded monthly:

installment payment =
$$\frac{10 \text{ an } r}{1 - (1 + r)^{-n}}$$

= $\frac{4795\frac{.08}{12}}{(1 - (1 + \frac{.08}{12})^{-120})} = 58.176581...$

amortization table for level payment plan

interest paid principal paid loan balance mo. payment $58.18 \quad 4795 \tfrac{.08}{_{12}} = 31.97 \qquad 58.18 - 31.97$ 1 4795-26.21=4768.79 balance × periodic rate payment-int balance-principal $4768.79\frac{.08}{12} = 31.79$ 2 58.18 58.18-31.79 4768.79-26.39 =26.39 =4742.4last months payment: 58.18 - .63 = 57.55

total paid: $58.18 \times 120 - .63 = 6980.97$

student loan \$4795.00 at 8% compounded monthly:

installment payment =
$$\frac{10 \text{ an } r}{1 - (1 + r)^{-n}}$$

= $\frac{4795 \frac{.08}{12}}{(1 - (1 + \frac{.08}{12})^{-120})} = 58.176581...$

amortization table for level payment plan

mo.	payment	interest paid	principal paid	loan balance			
1	58.18	$4795\frac{.08}{12} = 31.97$	58.18 - 31.97	4795-26.21=4768.7			
		balance×periodic rate	payment-int	balance-principal			
2	58.18	$4768.79\frac{.08}{12} = 31.79$	58.18-31.79	4768.79-26.39			
			=26.39	=4742.4			
	last months payment: $58.1863 = 57.55$						
	total paid: $58.18 \times 12063 = 6980.97$						

total interest: 6980.97 - 4795

- Write down the loan payment formula with numbers filled in for an 84212 loan for 30 years compounded at 6.75% monthly.
- Solve for the monthly payment. $\frac{\text{loan amount } r}{1 - (1 + r)^{-n}} = \text{loan payment}$
- Calculate the first two rows of the amortization table. month payment interest paid principal paid loan balance

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Write down the loan payment formula with numbers filled in for an 84212 loan for 30 years compounded at 6.75% monthly.
- Solve for the monthly payment. $\frac{\text{loan amount } r}{1 - (1 + r)^{-n}} = \text{loan payment}$
- Calculate the first two rows of the amortization table. month payment interest paid principal paid loan balance

	А	В	С	D	E
1	condo cost	105265	monthly rate	0.005625	
2	loan amt	84212	1st years total interest	\$5,656.88	
3	payment	\$546.20	total interest 30 years	\$112,419.07	
4					
5	month #	End of Month Payment	Interest Paid that Month	Principal Paid that Month	Loan Balance
6	1	\$546.20	473.6925	\$72.50	\$84,139.50
7	2	\$546.20	\$473.28	\$72.91	\$84,066.58