Student, House, and Car Loans

- words with mort are often deadly \& among them are: mortgage="death pledge" amortize a debt=to "kill the debt"
- events described all actually happened and the same language is purposely used
- when our own future is at stake, most of us want to use every approach we can-many cases require the critical and creative analysis of a variety of interpretations in order to fully consider the implications
- notice the loan rates are higher than the savings rates, factoring in risk

Loan Payments

lender earns what it could elsewhere, we pay in installments:
lump sum of loan = periodic payment of our installments

Loan Payments

lender earns what it could elsewhere, we pay in installments:
lump sum of loan = periodic payment of our installments
loan $(1+r)^{n}=\frac{\text { installment payment }\left((1+r)^{n}-1\right)}{r}$
$r=$ periodic rate (like $\frac{.05}{12}$)
$n=$ \# times actually compounded (like 120 or 360)

Loan Payments

lender earns what it could elsewhere, we pay in installments:
lump sum of loan = periodic payment of our installments
loan $(1+r)^{n}=\frac{\text { installment payment }\left((1+r)^{n}-1\right)}{r}$
$r=$ periodic rate (like $\frac{.05}{12}$)
$n=$ \# times actually compounded (like 120 or 360)

1. solve for payment by reciprocals, exponents, and distribution. First mult both sides by reciprocal $\frac{r}{(1+r)^{n}-1}$

Loan Payments

lender earns what it could elsewhere, we pay in installments:
lump sum of loan = periodic payment of our installments
loan $(1+r)^{n}=\frac{\text { installment payment }\left((1+r)^{n}-1\right)}{r}$
$r=$ periodic rate (like $\frac{.05}{12}$)
$n=$ \# times actually compounded (like 120 or 360)

1. solve for payment by reciprocals, exponents, and distribution. First mult both sides by reciprocal $\frac{r}{(1+r)^{n}-1}$
installment payment $=$ loan $r \frac{(1+r)^{n}}{(1+r)^{n}-1}$

Loan Payments

lender earns what it could elsewhere, we pay in installments:
lump sum of loan = periodic payment of our installments
loan $(1+r)^{n}=\frac{\text { installment payment }\left((1+r)^{n}-1\right)}{r}$
$r=$ periodic rate (like $\frac{.05}{12}$)
$n=$ \# times actually compounded (like 120 or 360)

1. solve for payment by reciprocals, exponents, and distribution. First mult both sides by reciprocal $\frac{r}{(1+r)^{n}-1}$
installment payment $=$ loan $r \frac{(1+r)^{n}}{(1+r)^{n}-1}$
2. reduce further by multiplying both the numerator and denominator by $(1+r)^{-n}$ so the top reduces by exponents:

Loan Payments

lender earns what it could elsewhere, we pay in installments:
lump sum of loan = periodic payment of our installments
loan $(1+r)^{n}=\frac{\text { installment payment }\left((1+r)^{n}-1\right)}{r}$
$r=$ periodic rate (like $\frac{.05}{12}$)
r
$n=$ \# times actually compounded (like 120 or 360)

1. solve for payment by reciprocals, exponents, and distribution. First mult both sides by reciprocal $\frac{r}{(1+r)^{n}-1}$
installment payment $=$ loan $r \frac{(1+r)^{n}}{(1+r)^{n}-1}$
2. reduce further by multiplying both the numerator and denominator by $(1+r)^{-n}$ so the top reduces by exponents:
$=$ loan $r \frac{(1+r)^{-n}(1+r)^{n}}{(1+r)^{-n}\left((1+r)^{n}-1\right)}=\operatorname{loan} r \frac{1}{(1+r)^{-n}(1+r)^{n}-(1+r)^{-n}}$

Loan Payments

lender earns what it could elsewhere, we pay in installments:
lump sum of loan = periodic payment of our installments
loan $(1+r)^{n}=\frac{\text { installment payment }\left((1+r)^{n}-1\right)}{r}$
$r=$ periodic rate (like $\frac{.05}{12}$)
r
$n=$ \# times actually compounded (like 120 or 360)

1. solve for payment by reciprocals, exponents, and distribution. First mult both sides by reciprocal $\frac{r}{(1+r)^{n}-1}$
installment payment $=$ loan $r \frac{(1+r)^{n}}{(1+r)^{n}-1}$
2. reduce further by multiplying both the numerator and denominator by $(1+r)^{-n}$ so the top reduces by exponents:
$=\operatorname{loan} r \frac{(1+r)^{-n}(1+r)^{n}}{(1+r)^{-n}\left((1+r)^{n}-1\right)}=\operatorname{loan} r \frac{1}{(1+r)^{-n}(1+r)^{n}-(1+r)^{-n}}$
installment payment $=\operatorname{loan} r \frac{1}{1-(1+r)^{-n}}=$

Loan Payments

lender earns what it could elsewhere, we pay in installments:
lump sum of loan = periodic payment of our installments
loan $(1+r)^{n}=\frac{\text { installment payment }\left((1+r)^{n}-1\right)}{r}$
$r=$ periodic rate (like $\frac{.05}{12}$)
r
$n=$ \# times actually compounded (like 120 or 360)

1. solve for payment by reciprocals, exponents, and distribution. First mult both sides by reciprocal $\frac{r}{(1+r)^{n}-1}$
installment payment $=$ loan $r \frac{(1+r)^{n}}{(1+r)^{n}-1}$
2. reduce further by multiplying both the numerator and denominator by $(1+r)^{-n}$ so the top reduces by exponents:

$$
=\operatorname{loan} r \frac{(1+r)^{-n}(1+r)^{n}}{(1+r)^{-n}\left((1+r)^{n}-1\right)}=\operatorname{loan} r \frac{1}{(1+r)^{-n}(1+r)^{n}-(1+r)^{-n}}
$$

installment payment $=$ loan $r \frac{1}{1-(1+r)^{-n}}=\frac{\text { loan } r}{1-(1+r)^{-n}}$

Loan Payments and Amortization

loan amount r
$\frac{\text { loan amount } r}{1-(1+r)^{-n}}=$ loan payment

- total paid= payment \times \# times compounded - overpayment
- total interest = total paid - loan

Loan Payments and Amortization

Ioan amount r
$\frac{1-(1+r)^{-n}}{1-(l o a n ~ p a y m e n t}$

- total paid= payment \times \# times compounded - overpayment
- total interest = total paid - loan
- interest each period on a loan is computed just as in savings:
account balance \times periodic rate but now we pay it back rather than earn it

Congratulations—Now Feed Me Your Loan Payments!

https://www.brookings.edu/blog/up-front/2020/04/16/whats-the-government-done-to-relieve-student-loan-borrowers-

Dear Sarah J Greenwald

At this time you have a choice of repayment terms for your student loan $\$ 4795.00$ at 8% compounded monthly:

Graduated Repayment Plan \# PMTS PMT AMT
$\begin{array}{ll}24 & 34.05 \\ 24 & 44.79\end{array}$
$24 \quad 58.92$
$24 \quad 77.50$
$23 \quad 101.94$
196.92

Level Payment Plan \# PMTS PMT AMT 11958.18
$1 \quad 57.55$
total $\$ 6980.97$

Student Loan

student loan $\$ 4795.00$ at 8% compounded monthly: loan r installment payment $=\frac{\text { loan } r}{1-(1+r)^{-n}}$

$$
=\frac{4795 \frac{.08}{12}}{\left(1-\left(1+\frac{.08}{12}\right)^{-120}\right)}=
$$

Student Loan

student loan \$4795.00 at 8\% compounded monthly: installment payment $=\frac{\text { loan } r}{1-(1+r)}$

$$
=\frac{4795 \frac{.08}{12}}{\left(1-\left(1+\frac{.08}{12}\right)^{-120}\right)}=58.176581 \ldots
$$

amortization table for level payment plan
mo.
$58.18 \quad 4795 \frac{.08}{12}=31.97$ balance \times periodic rate
principal paid loan balance
58.18-31.97 4795-26.21=4768.79
payment-int balance-principal

Student Loan

student loan \$4795.00 at 8\% compounded monthly: installment payment $=\frac{\text { loan } r}{1-(1+r)^{-n}}$

$$
=\frac{4795 \cdot \frac{08}{12}}{\left(1-\left(1+\frac{.08}{12}\right)^{-120}\right)}=58.176581 \ldots
$$

amortization table for level payment plan
mo.
$2 \quad 58.18 \quad 4768.79 \frac{08}{12}=31.79$
principal paid loan balance
58.18-31.97 4795-26.21=4768.79
payment-int balance-principal

Student Loan

student loan $\$ 4795.00$ at 8% compounded monthly: installment payment $=\frac{\text { loan } r}{1-(1+r)^{-n}}$

$$
=\frac{4795 \cdot \frac{08}{12}}{\left(1-\left(1+\frac{.08}{12}\right)^{-120}\right)}=58.176581 \ldots
$$

amortization table for level payment plan
mo.
$2 \quad 58.18 \quad 4768.79 \frac{08}{12}=31.79 \quad 58.18-31.79$

Student Loan

student loan $\$ 4795.00$ at 8% compounded monthly:
installment payment $=\frac{\text { loan } r}{1-(1+r)^{-n}}$

$$
=\frac{4795 \cdot \frac{08}{12}}{\left(1-\left(1+\frac{.08}{12}\right)^{-120}\right)}=58.176581 \ldots
$$

amortization table for level payment plan
mo.
$2 \quad 58.18 \quad 4768.79 \cdot \frac{08}{12}=31.79$
principal paid loan balance
58.18-31.97 4795-26.21=4768.79
payment-int balance-principal
58.18-31.79 4768.79-26.39
$=26.39=4742.4$

Student Loan

student loan $\$ 4795.00$ at 8% compounded monthly: installment payment $=\frac{\text { loan } r}{1-(1+r)^{-n}}$

$$
=\frac{4795 \cdot \frac{.08}{12}}{\left(1-\left(1+\frac{.08}{12}\right)^{-120}\right)}=58.176581 \ldots
$$

amortization table for level payment plan
mo.
$2 \quad 58.18 \quad 4768.79 .08=31.79$ principal paid loan balance $58.18 \quad 4795 \frac{.08}{12}=31.97$ balance \times periodic rate 58.18-31.97 $4795-26.21=4768.79$ payment-int balance-principal 58.18-31.79 4768.79-26.39
$=26.39 \quad=4742.4$

Student Loan

student loan $\$ 4795.00$ at 8% compounded monthly:
installment payment $=\frac{\text { loan } r}{1-(1+r)^{-n}}$

$$
=\frac{4795 \cdot \frac{.08}{12}}{\left(1-\left(1+\frac{.08}{12}\right)^{-120}\right)}=58.176581 \ldots
$$

amortization table for level payment plan
mo.
$2 \quad \begin{gathered}58.18 \quad 4768.79 \cdot \frac{08}{12}=31.79 \quad 58.18-31.7 \\ =26.39\end{gathered}$ total paid: $58.18 \times 120-.63=6980.97$
principal paid loan balance
58.18-31.97 4795-26.21=4768.79
payment-int balance-principal
58.18-31.79 4768.79-26.39
$=4742.4$

Student Loan

student loan $\$ 4795.00$ at 8% compounded monthly:
installment payment $=\frac{\text { loan } r}{1-(1+r)^{-n}}$

$$
=\frac{4795 \cdot \frac{.08}{12}}{\left(1-\left(1+\frac{.08}{12}\right)^{-120}\right)}=58.176581 \ldots
$$

amortization table for level payment plan
$2 \quad 58.18 \quad 4768.79 \cdot \frac{08}{12}=31.79$
principal paid loan balance 58.18-31.97 4795-26.21=4768.79 payment-int balance-principal 58.18-31.79 4768.79-26.39
$=26.39 \quad=4742.4$
last months payment: $58.18-.63=57.55$ total paid: $58.18 \times 120-.63=6980.97$
total interest: $6980.97-4795$

- Write down the loan payment formula with numbers filled in for an 84212 loan for 30 years compounded at 6.75% monthly.
- Solve for the monthly payment. loan amount r $\frac{1-(1+r)^{-n}}{1-\text { loan payment }}$
- Calculate the first two rows of the amortization table. month payment interest paid principal paid loan balance
- Write down the loan payment formula with numbers filled in for an 84212 loan for 30 years compounded at 6.75% monthly.
- Solve for the monthly payment. Ioan amount r $\frac{1-(1+r)^{-n}}{1-(\text { loan payment }}$
- Calculate the first two rows of the amortization table. month payment interest paid principal paid loan balance

	A	B	C	D	E
1	condo cost	105265	monthly rate	0.005625	
2	loan amt	84212	1st years total interest	\$5,656.88	
3	payment	\$546.20	total interest 30 years	\$112,419.07	
4					
5	month \#	End of Month Payment	Interest Paid that Month	Principal Paid that Month	Loan Balance
6	1	\$546.20	473.6925	\$72.50	\$84,139.50
7	2	\$546.20	\$473.28	\$72.91	\$84,066.58

