Loan Payments and Amortization

$$
\text { payment }=\frac{\text { loan amount } r}{1-(1+r)^{-n}}=\frac{14500 \cdot \frac{12}{12}}{\left(1-\left(1+\frac{.12}{12}\right)^{(-12 \times 4)}\right)}=\$ 381.84
$$

month Payment Interest Paid Principal Paid Loan Balance

1	381.84	$\$ 145$	$\$ 236.84$	$\$ 14,263.16$
		$14500 \cdot \frac{12}{12}$	$381.84-145$	$14500-236.84$
2	381.84	$\$ 142.63$	$\$ 239.21$	$\$ 14,023.95$
		$14263.16 \cdot \frac{12}{12}$	$381.84-142.63$	$14263.16-239.21$
3	381.84	$\$ 140.24$	$\$ 241.60$	$\$ 13,782.35$
		$14023.95 \frac{.12}{12}$	$381.84-140.24$	$14023.95-241.60$

- total paid $=381.84 \times 12 \times 4$ - overpayment
- total interest $=$ total paid - loan $=381.84 \times 12 \times 4-14500$

Loan Payments

lender earns what it could elsewhere, we pay in installments: lump sum of loan = periodic payment of our monthly payment Ioan amount $(1+r)^{n}=\frac{\text { monthly payment }\left((1+r)^{n}-1\right)}{r}$
$r=$ periodic rate (like $\frac{.05}{12}$)
$n=$ \# times compounded (like 120 or 360)
(1) loan amount $r \frac{(1+r)^{n}}{(1+r)^{n}-1}=$ loan payment
(2) reduce further using $x=(1+r)^{n}$

$$
\frac{(1+r)^{n}}{(1+r)^{n-1}}=\frac{x}{x-1}=\frac{x}{x-1} \frac{\frac{1}{x}}{\frac{1}{x}}=\frac{1}{x \frac{1}{x}-1 \frac{1}{x}}=\frac{1}{1-\frac{1}{x}}=\frac{1}{1-(1+r)^{-n}}
$$

(3) sub back in

$$
\frac{\text { loan amount } r}{1-(1+r)^{-n}}=\text { loan payment }
$$

