

Geometry of the Earth and Universe

 How we measure and view the world around us and decide what is the nature of reality: What does a geometric space look like, how do we know, and how do we represent it? Possibilities and real-world applications...- diverse perspectives including local to global connections
- truth \& consequences, the role of chance and probability
- ways that diverse people succeed in and impact mathematics
- what mathematics is \& offers

Does the real universe have curves?
IS SPACE...

FLAT? HYPERBOLIC?

minutephysics What Is The Shape of Space? (ft. PhD Comics)

Discussion Question

8 How could we know that the earth is a round sphere without using technology from the 20th or 21st centuries?

http://gstene.files.wordpress.com/2008/08/flat_earth.jpg

A View of the Earth-Once Upon a Time

E.H. Bunbury

Eratosthenes' (~276 BCE - ~195 BCE) Data

Creative Commons Attribution-Share Alike 3.0 Unported
Todd Timberlake, remixed by lookang, version public domain earth from Tom Patterson
http://weelookang.blogspot.sg/2012/06/ejs-open-source-eratostheries-meāsures.html

Eratosthenes Thinks Big (Globally!)

Eratosthenes Thinks Big (Globally!)

$\frac{7.2^{\circ}}{360^{\circ}}=\frac{5000 \text { stadia }}{\text { circumference }}$

Local to Global: Multiple Perspectives

ใ How could we know that the earth is round without using modern technology?
Geography
Philosophy
Physics \& Astronomy
Mathematics
Navigation
Weather

Local to Global: Multiple Perspectives

 How could we know that the earth is round without using modern technology?Geography
Philosophy
Physics \& Astronomy
Mathematics
Navigation
Weather
Still controversial? flat earth society

What does a geometric space look like, how do we know, and how do we represent it? Other possibilities and real-world applications...

Dr. Sarah
1010: Introduction to Mathematics

Geometry Flat Angle Sum = ?

Geometry Flat Angle Sum = ?

Why/How do we know?

Walking a Euclidean Angle Sum

- Lay out a triangle with masking tape
- Pick a vertex to begin your triangle walk. Note the vertex and which way you are facing.

Walking a Euclidean Angle Sum

- Start walking along your triangle, keeping the center of your body on the boundary of the triangle.

Walking a Euclidean Angle Sum

- When you get to a turn (one of the angles of the triangle), turn your body so that it sweeps the interior angle of the triangle (careful!). You may be walking backwards for a time.

Walking a Euclidean Angle Sum

- When you get to a turn (one of the angles of the triangle), turn your body so that it sweeps the interior angle of the triangle (careful!). You may be walking backwards for a time.

Walking a Euclidean Angle Sum

- When you get to a turn (one of the angles of the triangle), turn your body so that it sweeps the interior angle of the triangle (careful!). You may be walking backwards for a time.

Walking a Euclidean Angle Sum

- When you get to a turn (one of the angles of the triangle), turn your body so that it sweeps the interior angle of the triangle (careful!). You may be walking backwards for a time.

Walking a Euclidean Angle Sum

- When you get to a turn (one of the angles of the triangle), turn your body so that it sweeps the interior angle of the triangle (careful!). You may be walking backwards for a time.

Walking a Euclidean Angle Sum Intrinsically

- Sweep out the last interior angle to finish your angle sum walk.
- The change in direction in your body from start to finish is the sum of the angles in this triangle.

Folding an Angle Sum Extrinsically

- Rip a triangle from paper.
- Fold one angle to bring it down to the base by using a fold parallel to the base.
- Fold the other angles in

Folding an Angle Sum Extrinsically

- Notice the angles fit to take up the entire space along the base and this gives us the angle sum.

http://mathonthemckenzie.blogspot.com/2013/12/180.html

What is Dimension and Parallel?

Dimension: degrees of freedom of movement in space or efficient algebraic coordinates.
Parallel: straight-feeling paths that never meet.

$$
{ }_{0}^{P}
$$

line /

Shape of the World \& Seeing is Believing Video

The people in the video:
American Actor \& Director (narrator here): Danny Glover British Artist and Mapmaker: Nigel Holmes American Art Historian: Sam Edgerton

Projective Geometry: Artists and Mathematicians

Dimension: degrees of freedom of movement in space or efficient algebraic coordinates.
Parallel: straight-feeling paths that never meet.

2D Representation of 3D Space

Interior of Antwerp Cathedral, by Pieter Neefs the Elder, 1651
http://collection.imamuseum.org/artwork/71818/ =

Projective Geometry: Artists and Mathematicians

Marc Frantz's Mathematics and Art https://math.iupui.edu/m290

$$
x^{\prime}=\frac{d x}{z+d} \quad y^{\prime}=\frac{d y}{z+d}
$$

where d is the distance from the viewer's eye at $(0,0,-d)$
If $d=3$ and we want to paint the point ($2,4,5$), we paint at:

Projective Geometry: Artists and Mathematicians

Marc Frantz's Mathematics and Art https://math.iupui.edu/m290

$$
x^{\prime}=\frac{d x}{z+d} \quad y^{\prime}=\frac{d y}{z+d}
$$

where d is the distance from the viewer's eye at $(0,0,-d)$
If $d=3$ and we want to paint the point ($2,4,5$), we paint at:

$$
x^{\prime}=\frac{3 \times 2}{5+3} \quad y^{\prime}=\frac{3 \times 4}{5+3}
$$

Julian Beever's pavement drawings

http://www.julianbeever.net/images/phocagallery/gallery/butterfly-i.jpg
I decided to get into 3D after seeing the effect of tiles being removed from the street, and later trying to recreate the sense of depth in a drawing. Once I realised you could make things go down, I realised you could make them appear to go up and I began experimenting. Pavement Picasso by Sarah Loat

Julian Beever's pavement drawings

julianbeever.net/images/phocagallery/gallery/thumbs/phoca_thumb_l_globewrongview-i.jpg
I decided to get into 3D after seeing the effect of tiles being removed from the street, and later trying to recreate the sense of depth in a drawing. Once I realised you could make things go down, I realised you could make them appear to go up and I began experimenting.

Julian Beever's pavement drawings

http://www. julianbeever.net/images/phocagallery/gallery/thumbs/phoca_thumb_l_globe-i.jpg
I decided to get into 3D after seeing the effect of tiles being removed from the street, and later trying to recreate the sense of depth in a drawing. Once I realised you could make things go down, I realised you could make them appear to go up and I began experimenting.

Julian Beever's pavement drawings

http://www.julianbeever.net/images/phocagallery/gallery/accident-i.jpg 三,

Where is North?

Stand up and point in the direction of North.

Inspected

Corrected

SUCCESS

SUCCESS

What people think it looks like

ThelenderinNe.org

What it really looks like
https://mathequalslove.blogspot.com/p/free-classroom-posters.html https://www.leaderinme.org/blog/the-power-of-a-growth-mindset/
. 30 Exams+ 05 Effective Class Engagement +.50 Effective ASULearn Engagement +.15 Final Project

Exam Corrections For 1 Exam

- original exam and revisions of one exam toward the end of the semester
- write on exam or separate sheet of paper to correct it
- use resources and get help from me
- Making mistakes is integral to the learning process as long as you review and understand any misconceptions, and I want to encourage and reward this.
- revised exam grade replaces the original. I want you to solidify the material and I am here to help!

