Geometry of our Universe: Historical and Recent Ideas

- Platonic solids: universe = finite dodecahedron
- Earth centered
- 19th century: elusive luminiferous ether
- Einstein theory of relativity: Riemann's curved space
- Recent: Wraparound universe like a dodecahedron? Dark matter?

Sarah J. Greenwald - Appalachian State University

Geometry of the Universe

Sarah J. Greenwald - Appalachian State University

Geometry of the Universe

ヘロト 人間 とくほとくほとう

Sarah J. Greenwald - Appalachian State University

Geometry of the Universe

ヘロト 人間 とくほとくほとう

Sarah J. Greenwald - Appalachian State University Ge

Sarah J. Greenwald - Appalachian State University

Geometry of the Universe

Sarah J. Greenwald - Appalachian State University Geometry of the Universe

Sarah J. Greenwald - Appalachian State University Geometry of the Universe

Sarah J. Greenwald - Appalachian State University

Geometry of the Universe

Sarah J. Greenwald - Appalachian State University

Geometry of the Universe

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Sarah J. Greenwald - Appalachian State University

Geometry of the Universe

Sarah J. Greenwald - Appalachian State University

Geometry of the Universe

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Sarah J. Greenwald - Appalachian State University

Geometry of the Universe

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Sarah J. Greenwald - Appalachian State University

Geometry of the Universe

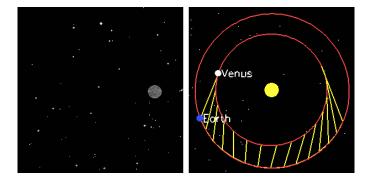
Sarah J. Greenwald - Appalachian State University

Geometry of the Universe

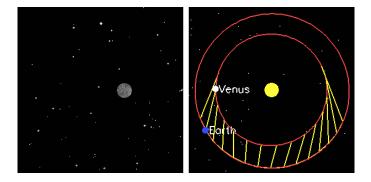
Sarah J. Greenwald - Appalachian State University

Geometry of the Universe

Sarah J. Greenwald - Appalachian State University

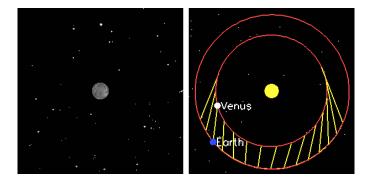

Geometry of the Universe

Scientific & Mathematical Breakthroughs

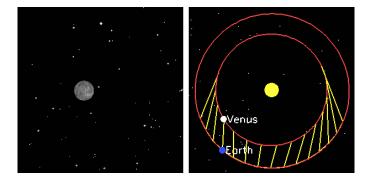

- They require imaginative leaps
- Understanding what we are seeing is complicated by filters

・ 同 ト ・ ヨ ト ・ ヨ ト

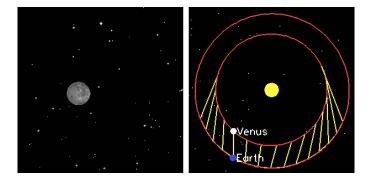
ъ



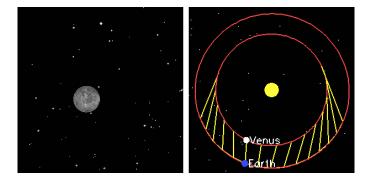
Geometry of the Universe

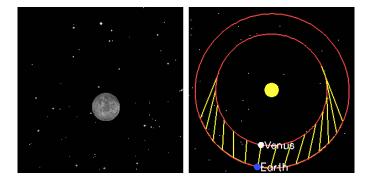


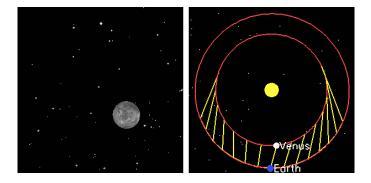
Geometry of the Universe


< 一型

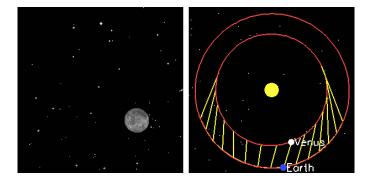
Geometry of the Universe

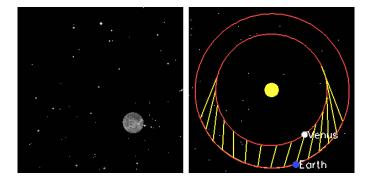


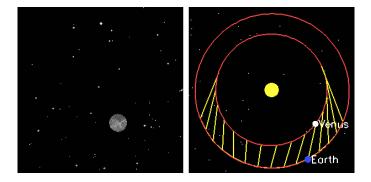

Geometry of the Universe

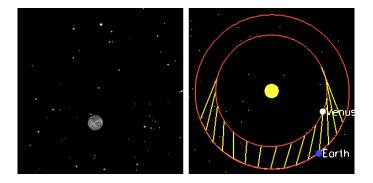


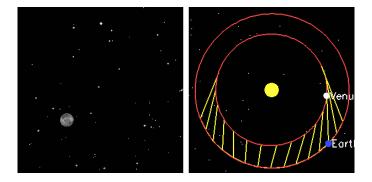
Geometry of the Universe

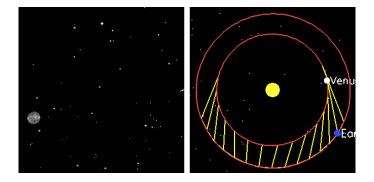

< 一型

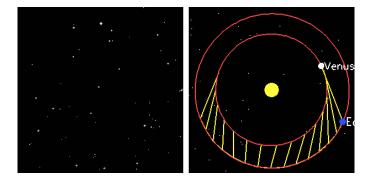



Geometry of the Universe




Geometry of the Universe




Geometry of the Universe

Geometry of the Universe

< 一型

Is our Universe Finite Without Edges?

Euclidean (Pythagorean thm, 180° angle sum, 1 parallel)

- Klein bottle: 1882; Pac-Man 1980
- 3-torus with 96 stars
- An apartment in Futurama: I, Roommate
- Portal video game

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Is our Universe Finite Without Edges?

Euclidean (Pythagorean thm, 180° angle sum, 1 parallel)

- Klein bottle: 1882; Pac-Man 1980
- 3-torus with 96 stars
- An apartment in Futurama: I, Roommate
- Portal video game
- Looking for repeated star patterns—Critiques: light takes times to reach us and changes the view, recognize?

Spherical $(a^2 + b^2 > c^2)$, angle sum > 180°, no parallels)

ヘロン ヘアン ヘビン ヘビン

Sarah J. Greenwald - Appalachian State University

ヘロン 人間 とくほ とくほ とう

1

Angle Sum: Euclidean, Spherical, Hyperbolic or Mix?

• Gauss: Hoher Hagen, Inselsberg, and Brocken

Ringelven - Hohen Hauen - Inselsterne Das größte von Carl Friedrich Gauß vermessene Dreieck im Zuge der hannoverschen Gradmessung (1821 - 1825)zur Bestimmung der Erdgestalt.

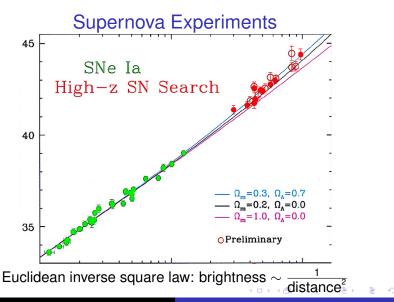
Angle Sum: Euclidean, Spherical, Hyperbolic or Mix?

• Gauss: Hoher Hagen, Inselsberg, and Brocken

Brooken - Hohen Hagen - Inselshene Das größte von Carl Friedrich Gauß vermessene Dreieck im Zuge der hannoverschen Gradmessung (1821 - 1825)zur Bestimmung der Erdgestalt.

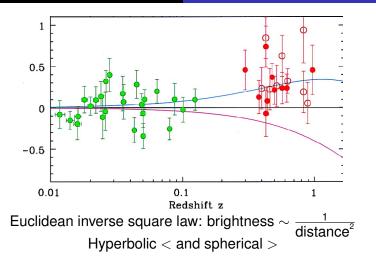
• Nikolai Lobachevsky: star Sirius 180° – sum of the angles = 3.727×10^{-6} (should be 10^{-8})

くロト (過) (目) (日)


Angle Sum: Euclidean, Spherical, Hyperbolic or Mix?

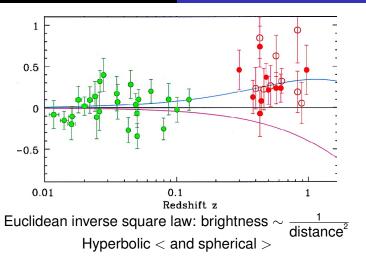
• Gauss: Hoher Hagen, Inselsberg, and Brocken

Ringelven - Hohen Hauen - Inselsterne Das größte von Carl Friedrich Gauß vermessene Dreieck im Zuge der hannoverschen Gradmessung (1821 - 1825)zur Bestimmung der Erdgestalt.

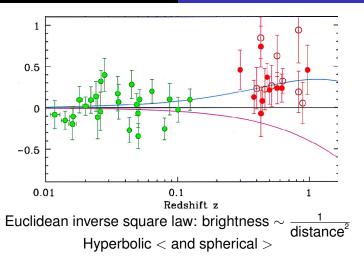

- Nikolai Lobachevsky: star Sirius 180° sum of the angles = 3.727×10^{-6} (should be 10^{-8}) Euclidean= 180° , spherical> 180° , hyperbolic< 180°
- Critiques: Experimental error, light rays bend with gravity, triangles too small, convenience sample

Venus

Sarah J. Greenwald - Appalachian State University Geometry of the Universe


Venus

< ∃→


э

Venus

Distant supernovae dimmer than expected in Euclidean

Venus

Distant supernovae dimmer than expected in Euclidean Critiques: Experimental error, no perfect model, not necessarily exploding at the same brightness

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Density Experiments: WMAP & Planck

- Cosmic Microwave Background: small temperature fluctuations due to primordial plasma density
- Density equation
- Infinite Euclidean universe within .4%

Density Experiments: WMAP & Planck

- Cosmic Microwave Background: small temperature fluctuations due to primordial plasma density
- Density equation
- Infinite Euclidean universe within .4%
- missing fluctuations on large scale better fit a large spherical dodecahedral space [Weeks] or hyperbolic [Cowen]

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Density Experiments: WMAP & Planck

- Cosmic Microwave Background: small temperature fluctuations due to primordial plasma density
- Density equation
- Infinite Euclidean universe within .4%
- missing fluctuations on large scale better fit a large spherical dodecahedral space [Weeks] or hyperbolic [Cowen]
- Critiques: convenience samples, observable, experimental error, difficulty agreeing on the meaning of the data, neutrino mass, dark energy, speed of light?

(画) (目) (目) (目)

ヘロト 人間 とくほとくほとう

"Shape of the Universe" Web Search

Further Readings

- Cowen, Ron (2013), "Universe may be curved, not flat: Anomalies in relic radiation could contradict the evidence for a level cosmos." Nature. http://www.nature.com/news/universe-may-be-curved-not-flat-1.13776
- European Space Agency (2013), "Space Science: Planck." http://www.esa.int/Our_Activities/Space_Science/Planck
- (2005), "The Shape of the Universe." Mathematics Awareness Month Theme Essay. http://www.mathaware.org/mam/05/shape.of.universe.html
- (2013), "Classroom Activities on the Geometry of the Earth and Universe." http://cs.appstate.edu/~sjg/talks/earthanduniverse.html
- Kragh, Heige (2012), "Is Space Flat? Nineteenth-Century Astronomy and Non-Euclidean Geometry." Journal of Astronomical History and Heritage 15(3), pp. 149 - 158.

http://www.narit.or.th/en/files/2012JAHHvol15/2012JAHH...15..149K.pdf

- NASA (2010), "Universe 101: Our Universe." http://wmap.gsfc.nasa.gov/universe/universe.html
- Simanek, Donald E (2006), "The Flat Earth." https://www.lhup.edu/~dsimanek/flat/flateart.htm
- Weeks, Jeffrey (2004), "The Poincare Dodecahedral Space and the Mystery of the Missing Fluctuations." Notices of the AMS 51(6), pp. 610-619. http://www.ams.org/notices/200406/fea-weeks.pdf
- Weeks, Jeff (2012), "The Shape of Space." Museum of Mathematics. https://www.youtube.com/watch?v=5u7hFQy9Mt0&feature=relate