Review of Geometries by Dr. Sarah

Playfairs Given a straight line in the space and a point off of that line, is there a unique parallel that we can construct?

Euclidean yes

Spherical no - there are 0 parallels as any 2 great circles intersect in 2 places

Hyperbolic no - there are infinitely many parallels to this line through this point

Sum of the Angles in a Triangle

Euclidean 180° or π
Spherical $180^{\circ}<$ sum $<540^{\circ}$ (note $540^{\circ}=3 \pi$)
Hyperbolic $0^{\circ}<$ sum $<180^{\circ}$

The Pythagorean Theorem

In a right triangle, is $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$?

As triangles get smaller in spherical and hyperbolic geometry, they become more and more flat and so $a^{2}+b^{2}$ gets closer to c^{2}.

