Some cosmologists expect the universe to be finite,
curving back around on itself.
Historically, the idea of a finite universe ran into its own obstacle: the apparent need for an edge. Aristotle argued that the universe is finite on the grounds that a boundary was necessary to fix an absolute reference frame, which was important to his worldview. But his critics wondered what happened at the edge. Every edge has another side. So why not redefine the "universe" to include that other side? German mathematician Georg Riemann solved the riddle in the mid-19th century. As a model for the cosmos, he proposed the hypersphere--the three-dimensional surface of a four-dimensional ball, just as an ordinary sphere is the two-dimensional surface of a three-dimensional ball. It was the first example of a space that is finite yet has no problematic boundary. One might still ask what is outside the universe. But this question supposes that the ultimate physical reality must be a Euclidean space of some dimension. That is, it presumes that if space is a hypersphere, then that hypersphere must sit in a four-dimensional Euclidean space, allowing us to view it from the outside. Nature, however, need not cling to this notion. It would be perfectly acceptable for the universe to be a hypersphere and not be embedded in any higher-dimensional space. Such an object may be difficult to visualize, because we are used to viewing shapes from the outside. But there need not be an "outside."
We will go over the lab in class tomorrow.
If you are finished, you
may leave, or stay to ask me questions in office hours.