Case Studies

With regard to the 1936 Landon and Roosevelt election Literary Digest poll, which predicted the winner as Landon
a) the sample size was not large enough
b) the sample was not diverse enough
c) Landon would have won-but Roosevelt's win was due to a last minute change in sentiment
d) other

With regard to the 1936 Landon and Roosevelt election Literary Digest poll, which predicted the winner as Landon
a) the sample size was not large enough
b) the sample was not diverse enough
c) Landon would have won-but Roosevelt's win was due to a last minute change in sentiment
d) other

The Literary Digest

Literary Digest, October 31, 1936

Which of the following in the hw readings did you find most compelling?
a) inconsistencies in scaling can lead to false interpretations
b) the average American or average salary of Lakeside school can be very misleading. Half of the people are not necessarily below average.
c) sampling pitfalls such as convenience sampling, voluntary responses, and asking unclear or misleading questions
d) other

Which of the following in the hw readings did you find most compelling?
a) inconsistencies in scaling can lead to false interpretations
b) the average American or average salary of Lakeside school can be very misleading. Half of the people are not necessarily below average.
c) sampling pitfalls such as convenience sampling, voluntary responses, and asking unclear or misleading questions
d) other
collecting data: reproducibility, consensus, and random sampling if possible
presenting data: entire data set versus numerical or visual snapshots of it
all can be subject to bias and distortion, and are definitely subject to probability and random variations

Confidence Levels

- If there is little to no bias and truly a random sample, then $x \%$ confidence interval is a numerical interval generated by a procedure that x times out of 100 will produce an interval that contains the true value for the entire population.
-margin of error=lower boundary +margin of error=upper boundary

- Likelihood of the sample outcome-no way to know which intervals contain the true percentage and which don't

Margin of Error

- margin of error gives a range the actual percentage is likely to be within if the sample size is large enough. Higher confidence level has a wider interval.
- For a 95% confidence interval, a sample of size n will have margin of error approximately $\frac{1}{\sqrt{n}}$ (conservative estimate).
- We check for overlaps in the intervals in order to evaluate the statistical validity of headlines and statements in polls

Statistically Accurate Claim?

"Desire to Migrate Rises in North Africa"
2017 lower boundary: $32-2=30 \%$ 2016 upper boundary: $28+2=30 \%$
WORLD APRIL 24, 2018

Desire to Migrate Rises in North Africa

BY IMAN BERRACHED AND RJ REINHART

NORTH AFRICANS WHO WOULD LIKE TO
MIGRATE TO ANOTHER COUNTRY
2016
2017
28\% 32\%

GALLUP WORLD POLL
it could have stayed the same!

Statistics from Nature

Benford's Law and the likely frequency of the first digit applied to many data sets. Is there a pattern to spirals in nature?

Statistics from Nature

Benford's Law and the likely frequency of the first digit applied to many data sets. Is there a pattern to spirals in nature?

Statistics from Nature

Benford's Law and the likely frequency of the first digit applied to many data sets. Is there a pattern to spirals in nature?

Statistics from Nature

Benford's Law and the likely frequency of the first digit applied to many data sets. Is there a pattern to spirals in nature?

Picture credits:

1. Clockwise hurricane Georges originated in southern hemisphere:
http://www.aoml.noaa.gov/hrd/Storm_pages/georges1998/sat.html
2-3. Ron Knott http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html
4 and 6. Wernher Krutein
2. The Heart of Mathematics

Picture credit:
Ron Knotthttp://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html

- Explore ideas systematically
- Look for a pattern
- Create abstract ideas by modeling nature
- Unexpected patterns are often a sign of hidden, underlying structure [and Excel can help us find it]
- Explore the consequences of new ideas

Picture credit:
Ron Knott http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html

- Explore ideas systematically
- Look for a pattern
- Create abstract ideas by modeling nature
- Unexpected patterns are often a sign of hidden, underlying structure [and Excel can help us find it]
- Explore the consequences of new ideas

Picture credit:
Ron Knott http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html
$\frac{1+\sqrt{5}}{2} \approx 1.618033988749894848204586834365638117720$
Why is it plausible that there is a pattern to spirals in nature? Where else do we find the same pattern?
http://www.youtube.com/watch?v=lOIP_Z_- 0 Hs

In the following we see two side-by-side boxplots on reaction times of control group vs cell users

Reaction time with cell phone usage

What can you say about the data from the median to Q3, the third quartile, of the reaction times?
a) cell phone users did better because the data is more tightly clustered together
b) control group did better because the data is lower
c) neither

Strength of the Relationship: r^{2} percent

- 0 to 10% no 10% to 25% weak 25\% to 65\% moderate above 65\% strong
- NOT a probability for correct nor a likelihood of on the line
- measures the y-values distances via sum of squares as variation in the dependent variable explained by linearity

Picture citations:

1. http://cs.wellesley.edu/~cs199/lectures/35-correlation-regression.html
2. http://www2.nau.edu/mat114-c/ch3a.php
3. http://math.maine121.org/welcome/chapter-5/

Would you have been drafted for Vietnam in 1969? Is there anyone in the class with the same birthday?

December 1, 1969 Vietnam Draft Lottery

https://www.youtube.com/watch?v=-p5X1FjyD_g

December 1, 1969 Vietnam Draft Lottery

https://www.youtube.com/watch?v=-p5X1FjyD_g

Joan Rosenblatt's 1970 Improvements

A truly unbiased military draft

January 01, 1970

Statisticians roundly criticized the 1969 draft lottery as unfair, so the Selective Service System asked NIST to devise an unquestionably random method for the 1970 draft. NIST mathematician Joan Rosenblatt and colleagues developed a method to randomly choose calendars and priority permutations for the draft. The new draft method was praised as fair, and Rosenblatt won the 1971 Federal Women's Award for her efforts on this and other projects.
https://www.nist.gov/node/774336
Lottery procedure was improved the next year with a two-drum system. The 365 birthdates (for those born in 1951) were written down, placed in capsules, and put in a drum in the order dictated by random permutations. Similarly, the numbers from 1 to 365 were written down and placed into capsules. One drum was rotated for an hour and the other for a half-hour (its rotating mechanism failed). Pairs of capsules were then drawn, one from each drum, one with a 1951 birthdate and one with a number 1 to 365 .

2000 Presidential Election-Bush, Gore, Buchanan

Florida Buchanan Vote by County
 Actual vs. Predicted
 Based Only on'96 Presidential Votes and '00 Presidential Primary Votes

Predicted Buchanan Vote from '96 Vote \& '00 Primary Vote
http://homepages.nyu.edu/~rmj1/objects/BuchPrio.jpg

2000 Presidential Election-Bush, Gore, Buchanan

What does the y-intercept mean when $x=\# y e a r s$ and $y=\#$ tickets and the best fit line is $y=-2.932 x+55.038$?
a) police give out 55 tickets as they start the job
b) tickets are going down by about 3 with every extra year of experience
c) neither

What does the y-intercept mean when $x=\# y e a r s$ and $y=\#$ tickets and the best fit line is $y=-2.932 x+55.038$?
a) police give out 55 tickets as they start the job
b) tickets are going down by about 3 with every extra year of experience
c) neither

No. years experience
$r=-.86$, so $r^{2}=73.96 \%$, and this tells us that
a) If you use the line to predict you'd get it right 74% of the time
b) The y-value distances of the data to the best fit line are small so experience in this data is a statistically strong predictor of tickets
$r=-.86$, so $r^{2}=73.96 \%$, and this tells us that
a) If you use the line to predict you'd get it right 74% of the time
b) The y-value distances of the data to the best fit line are small so experience in this data is a statistically strong predictor of tickets

The r^{2} value is strong but the line $y=-2.932(25)+55.038$ predicts that the police receives tickets after 25 years. Resolve the apparent conflict.
a) There is a typo-the actual r^{2} value should be weak
b) The mathematics of the r^{2} value and the prediction are correct: the police gets sloppy as they get older, causing them to be penalized
c) There are other reasons why the prediction doesn't hold up like extrapolation

How to Get Rich Quick as a Stock Whiz
If the r^{2} value was 100%, would you be assured to make money by using the best fit line to predict the future performance?
a) yes
b) no

How to Get Rich Quick as a Stock Whiz
If the r^{2} value was 100%, would you be assured to make money by using the best fit line to predict the future performance?
a) yes
b) no

Picture and data: https://www.weather.gov/rnk/winter

$$
\begin{array}{llllllll}
\geq .1^{\prime \prime} & \geq 1^{\prime \prime} & \geq 2^{\prime \prime} & \geq 4^{\prime \prime} & \geq 6^{\prime \prime} & \geq 88^{\prime \prime} & \geq 12^{\prime \prime} & \geq 18^{\prime \prime} \\
58 \% & 3 \% & 0 \% & 0 \% & 0 \% & 0 \% & 0 \%
\end{array}
$$

The weather, stocks and more are chaotic dynamical systems with uncertainty within expected values

- With r^{2}, we can categorize correlations

0 to 10\% no
10% to 25% weak
25% to 65% moderate above 65\% strong

- Even without r^{2} in front of us, we can visually inspect and categorize relationships.
- NOT a probability for correct nor a likelihood of on the line
- measures the y-values distances via sum of squares as variation in the dependent variable explained by linearity

