- probability: likeliness/chance: 0 to 1 (or 0 to 100\%)
- algebra of probability, like probability of sharing a birthday
- if independent then probabilities multiply
- event will occur = 1 - probability it won't
- expected value can give us an idea of likely outcomes, e.g. $\frac{1}{16}$ \# coin tossers for HHHH
$.5 \cdot 85+.05 \cdot 100+.3 \cdot 75+.15 \cdot 95$ for grade
- decision matrix, law of large numbers
- Benford's law: first digit in many real-life data sets $>500$ approximates a logarithmic trend where 1 occurs about $30 \%$ of the time while 9 less than $5 \%$
- respect for persons, max benefits while min risks, justice
- central tendency measures
- average or mean: sum all the numbers and divide by how many
- median: middle of ordered data-number and place
- boxplot

- 7 most popular in data

Here is a data set that measures population growth rates in the US from 1910-1919:

| 2.1 | 1.56 | 1.56 | 1.96 | 1.92 | 1.44 | 1.4 | 1.27 | -.06 | 1.26 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1910 | 1911 | 1912 | 1913 | 1914 | 1915 | 1916 | 1917 | 1918 | 1919 |

How would 1918 impact the mean/average? Use a scale balancing idea
a) drag the mean down from the median
b) drag the mean up from the median
c) would not impact the mean


Here is a data set that measures population growth rates in the US from 1910-1919:

| 2.1 | 1.56 | 1.56 | 1.96 | 1.92 | 1.44 | 1.4 | 1.27 | -.06 | 1.26 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1910 | 1911 | 1912 | 1913 | 1914 | 1915 | 1916 | 1917 | 1918 | 1919 |

How would 1918 impact the mean/average?
Use a scale balancing idea
a) drag the mean down from the median
b) drag the mean up from the median
c) would not impact the mean


What happened in $1918 ?$

Here is a data set that measures population growth rates in the US from 1910-1919:

| 2.1 | 1.56 | 1.56 | 1.96 | 1.92 | 1.44 | 1.4 | 1.27 | -.06 | 1.26 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1910 | 1911 | 1912 | 1913 | 1914 | 1915 | 1916 | 1917 | 1918 | 1919 |

How would 1918 impact the mean/average?
Use a scale balancing idea
a) drag the mean down from the median
b) drag the mean up from the median
c) would not impact the mean


What happened in 1918? median: 1.56. mean: 1.48.

Here is Nielsen ratings (roughly represent the percentage of households tuned in). Use the boxplots to award "best network"

a) ABC (top boxplot)
b) CBS (middle)
c) NBC (bottom)
d) There should be more than 1 winner
e) other

Here is Nielsen ratings (roughly represent the percentage of households tuned in). Use the boxplots to award "best network"

a) ABC (top boxplot)
b) CBS (middle)
c) NBC (bottom)
d) There should be more than 1 winner
e) other

Discuss how to spin the statistics positively for each network: Here's good news, we are the best network because... In one of them, it may be challenging to say something positive but truthful, but think creatively!

Which is true for CBS, the middle boxplot?


a) The mean is probably higher than the median
b) The mean is probably lower than the median
c) The mean is probably about the same as the median

- collecting data: reproducibility, consensus, and random sampling if possible
- presenting data: entire data set versus numerical or visual snapshots of it
- expected value: weighted probabilities for decisions
- mean and median: central tendencies
- box plots: comparisons
- regressions: correlations
- confidence intervals: uncertainty in even the best polls

all can be subject to bias and distortion, and are definitely subject to probability and random variations


## Music Compatiblity



## Music Compatiblity

|  | A | B | c | D | E | F | G | H | 1 | J |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | alternative | classical | country | christian | folk | jazz | oldies | opera r | rap | rock |
| 2 | 8 | 6 | 5 | 9 | 1 | 2 | 4 | 7 | 6 | 3 |
| 3 | 9 | 2 | 5 | 10 | 3 | 1 | 6 | 8 | 7 | 4 |
| 4 |  |  |  |  |  |  |  |  | $\square$ |  |
| 5 |  |  |  |  | Music | Choices |  |  |  |  |
| 6 |  |  |  |  |  |  |  |  |  |  |
| 7 |  |  |  |  |  |  |  |  |  |  |
| 8 |  |  | 12 |  |  |  |  |  |  |  |
| 9 |  |  |  |  |  |  |  |  |  |  |
| 10 |  |  | 10 |  |  |  |  |  |  |  |
| 11 |  |  |  |  | - |  |  |  |  |  |
| 12 |  |  | 8 |  |  |  |  |  |  |  |
| 13 |  |  | 㫛 |  |  | - |  | - Person 1 |  |  |
| 14 |  |  | $\underset{i}{E} 6$ |  |  |  |  | - Person 1 |  |  |
| 15 |  |  | $\%$ | ${ }^{\circ}$ |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |
| 17 |  |  |  |  | \% |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  | - I |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  |
| 21 |  |  | 0 | 2 | 46 | 8 | 10 | 2 |  |  |
| 22 |  |  | Alternative, classical, country, Christian, folk, jazz, oldies, opera, rap, rock |  |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |
| 24 |  |  |  |  |  |  |  |  |  |  |
| 25 |  |  |  |  |  |  |  |  |  |  |

## Inferences and Regression

- Karl Pearson statistics, eugenics
- correlation coefficient $r$ gives sign of slope of best fit line and a measure of how well it fits the data


> I DON'T TRUST LINEAR REGRESSIONS WHEN ITS HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

```
2. https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/
correlation-coefficient-formula/
3. https://xkcd.com/1725/
```


## Strength of the Relationship: $r^{2}$ percent

- 0 to $10 \%$ no
$10 \%$ to $25 \%$ weak
$25 \%$ to $65 \%$ moderate above 65\% strong
- NOT a probability for correct nor a likelihood of on the line
- measures the $y$-values distances via sum of squares as variation in the dependent variable explained by linearity




Picture citations:

1. http://cs.wellesley.edu/~cs199/lectures/35-correlation-regression.html
2. http://www2.nau.edu/mat114-c/ch3a.php
3. http://math.maine121.org/welcome/chapter-5/

## Correlation versus Causation



Plausible? Analyze the data. Look for random sampling, consensus, and confounding variables.

- Does hand length predict forearm?


## Correlation versus Causation



Plausible? Analyze the data. Look for random sampling, consensus, and confounding variables.

- Does hand length predict forearm?
$\sim 1.618 \pm .4$ :
(1.218, 2.018)
- Do hours without sleep the night before an exam predict midterm errors?


## George Gallup and the 1936 Election



## The Literary Digest <br> OCTOBER 31, 1936

## Topics of the day

LANDON, 1,293,669; ROOSEVELT, 972,897
Final Returns in The Digest's Poll of Ten Million Voters
$W_{\text {ell, the great battle of the ballots in the lican National Committee purchased Tus }}$
Poll of the great battle of the ballots in the lican National Committee purchased Tur Poll of ten million voters, seattered Lorzany Dioss?", "And ail types and vari-
throughout the forty-eeght States of the eties, including: "Have the Jews purchased
returned and let the people of the Nation draw their concluxions as to our accuracy So far, we have been right in every Poll. Will we be right in the current Poll? That, as Mrs. Roosevelt said concerning the President's reclection, is in the 'lap of the gods. "We never make any claims before elec tion but we respectfully refer you to the tion but we respectfuly refer you to the

Picture credit: 1. http://www.thegalluphouse.com/georgegallupbiography.html
2. http://www.unz.com/print/LiteraryDigest-1936oct31:4/

## Nate Silver and the 2016 Election



- "Data-driven predictions can succeed-and they can fail. It is when we deny our role in the process that the odds of failure rise. Before we demand more of our data, we need to demand more of ourselves."
- sabermetics, elections, FiveThirtyEight

Picture credit: Danielle Levitt

## Nate Silver on the 2016 Presidential Election

Post-election view: Should never, ever trust polls again, as they proved Secretary of State Clinton almost certain to win

## Nate Silver on the 2016 Presidential Election

Post-election view: Should never, ever trust polls again, as they proved Secretary of State Clinton almost certain to win Really: Polls showed an uncertain and volatile race with Clinton as a modest favorite and Trump (who was elected as president) with a chance

- myth there was a catastrophic failure for the polls. Trump outperformed his national polls by only 1 to 2 percentage points. He beat his polls by only 2 to 3 percentage points in the average swing state.


## Nate Silver on the 2016 Presidential Election

Post-election view: Should never, ever trust polls again, as they proved Secretary of State Clinton almost certain to win Really: Polls showed an uncertain and volatile race with Clinton as a modest favorite and Trump (who was elected as president) with a chance

- myth there was a catastrophic failure for the polls. Trump outperformed his national polls by only 1 to 2 percentage points. He beat his polls by only 2 to 3 percentage points in the average swing state.
- there were individual pollsters that had some explaining to do, especially in Michigan, Wisconsin and Pennsylvania, where Trump beat his polls by a larger amount.


## Nate Silver on the 2016 Presidential Election

Post-election view: Should never, ever trust polls again, as they proved Secretary of State Clinton almost certain to win Really: Polls showed an uncertain and volatile race with Clinton as a modest favorite and Trump (who was elected as president) with a chance

- myth there was a catastrophic failure for the polls. Trump outperformed his national polls by only 1 to 2 percentage points. He beat his polls by only 2 to 3 percentage points in the average swing state.
- there were individual pollsters that had some explaining to do, especially in Michigan, Wisconsin and Pennsylvania, where Trump beat his polls by a larger amount.
- not some sort of massive outlier; the polls were pretty much as accurate as they'd been, on average, since 1968
- FiveThirtyEight: Trump a 3 in 10 chance of winning the Electoral College. Others: 1 in 100


## Confidence Levels

- If there is little to no bias and truly a random sample, then $x \%$ confidence interval is a numerical interval generated by a procedure that $x$ times out of 100 will produce an interval that contains the true value for the entire population.

$$
\begin{aligned}
& \text { survey methods } \\
& \text { The results of this Wells Fargo/Gallup Investor and Retirement Optimism Index survey } \\
& \text { are based on a Gallup Panel web study completed by } 1,059 \text { U.S. investors, aged } 18 \text { and } \\
& \text { older, Aug. 13-20, 2018. The Gallup Panel is a probability-based longitudinal panel of U.S. } \\
& \text { adults. Gallup recruits panelists using random-digit-dial phone interviews that cover } \\
& \text { landlines and cellphones, as well as using address-based sampling methods. The Gallup } \\
& \text { Panel is not an opt-in panel. } \\
& \text { The sample for this study was weighted to be demographically representative of the U.S. } \\
& \text { adult population, using the most recent Current Population Survey figures. For results } \\
& \text { based on this sample, the margin of sampling error is } \pm 5 \text { percentage points at the } 95 \% \\
& \text { confidence level. Margins of error are higher for subsamples. In addition to sampling } \\
& \text { error, question wording and practical difficulties in conducting surveys can introduce } \\
& \text { error or bias into the findings of public opinion polls. }
\end{aligned}
$$

Gallup Positive Events for Investors Nov 7, 2018—https:
//news.gallup.com/poll/244268/positive-events-investors-buying-home-getting-married.aspx

- Likelihood of the sample outcome-no way to know which intervals contain the true percentage and which don't


## Confidence Levels

- If there is little to no bias and truly a random sample, then $x \%$ confidence interval is a numerical interval generated by a procedure that $x$ times out of 100 will produce an interval that contains the true value for the entire population.
-margin of error=lower boundary +margin of error=upper boundary

- Likelihood of the sample outcome-no way to know which intervals contain the true percentage and which don't


## Margin of Error



- margin of error gives a range the actual percentage is likely to be within if the sample size is large enough. Higher confidence level has a wider interval.
- For a $95 \%$ confidence interval, a sample of size $n$ will have margin of error approximately $\frac{1}{\sqrt{n}}$ (conservative estimate). A survey reports a margin of error of $3 \%$ at the $95 \%$ confidence interval. Approximately how many people were surveyed?


## Margin of Error



- margin of error gives a range the actual percentage is likely to be within if the sample size is large enough. Higher confidence level has a wider interval.
- For a $95 \%$ confidence interval, a sample of size $n$ will have margin of error approximately $\frac{1}{\sqrt{n}}$ (conservative estimate).
A survey reports a margin of error of $3 \%$ at the $95 \%$ confidence interval. Approximately how many people were surveyed?

$$
\frac{1}{\sqrt{n}}=.03
$$

## Margin of Error



- margin of error gives a range the actual percentage is likely to be within if the sample size is large enough. Higher confidence level has a wider interval.
- For a $95 \%$ confidence interval, a sample of size $n$ will have margin of error approximately $\frac{1}{\sqrt{n}}$ (conservative estimate).
A survey reports a margin of error of $3 \%$ at the $95 \%$ confidence interval. Approximately how many people were surveyed?
$\frac{1}{\sqrt{n}}=.03$ so $\frac{1}{.03}=\sqrt{n}$ and so


## Margin of Error



- margin of error gives a range the actual percentage is likely to be within if the sample size is large enough. Higher confidence level has a wider interval.
- For a $95 \%$ confidence interval, a sample of size $n$ will have margin of error approximately $\frac{1}{\sqrt{n}}$ (conservative estimate).
A survey reports a margin of error of $3 \%$ at the $95 \%$ confidence interval. Approximately how many people were surveyed?
$\frac{1}{\sqrt{n}}=.03$ so $\frac{1}{.03}=\sqrt{n}$ and so $\left(\frac{1}{.03}\right)^{2}=n$


## Gallup Polls

## SURVEY METHODS

Results for this Gallup World poll are based on an aggregation of telephone and in person interviews conducted with 5,011 individuals aged 15 or older residing in Algeria, Libya, Egypt, Morocco and Tunisia in 2016 and 5,030 in 2017. The interviews were conducted with between 1,000 and 1,016 individuals in each country, each year. For results based on an aggregation of adults residing in these countries, the margin of sampling error is $\pm 2$ percentage points at the $95 \%$ confidence level. All reported margins of sampling error include computed design effects for weighting.

We check for overlaps in the intervals in order to evaluate the statistical validity of headlines and statements in polls


## Gallup Polls

Results for this Gallup World poll are based on an aggregation of telephone and in person interviews conducted with 5,011 individuals aged 15 or older residing in Algeria, Libya, Egypt, Morocco and Tunisia in 2016 and 5,030 in 2017. The interviews were conducted with between 1,000 and 1,016 individuals in each country, each year. For results based on an aggregation of adults residing in these countries, the margin of sampling error is $\pm 2$ percentage points at the $95 \%$ confidence level. All reported margins of sampling error include computed design effects for weighting.
conservative margin of error: $\frac{1}{\sqrt{5011}} \sim .014 \sim 1.4 \%$ Gallup uses 2\%

## Statistically Accurate Claim?

We check for overlaps in the intervals in order to evaluate the statistical validity of headlines and statements in polls
"Desire to Migrate Rises in North Africa"
2017 lower boundary: $32-2=30 \%$
2016 upper boundary: $28+2=30 \%$
WORLD APRIL 24, 2018
Desire to Migrate Rises in North
Africa

BY IMAN BERRACHED AND RJ REINHART

NORTH AFRICANS WHO WOULD LIKE TO
MIGRATE TO ANOTHER COUNTRY
2016
2017
28\% 32\%
GALLUP WORLD POLL
it could have stayed the same!

| ( |  | $\times$ | 32\% |  |
| :---: | :---: | :---: | :---: | :---: |
| 26\% | 28\% | 30\% |  | 34\% |
|  | 2016 |  | 2017 |  |


https://i.ytimg.com/vi/vcb6CmUyxn0/hqdefault.jpg


