Coincidence and Uncertainty in Daily Life

- many events in our daily lives arise in terms of probabilities and statistics—even the basic interactions of molecules and subatomic particles
- we can use probability to move beyond a vague sense of disordered randomness and describe possible outcomes

Picture credit: http://spikedmath.com/355.html

・ロト ・ 理 ト ・ ヨ ト ・

3

Probability

- quantitative measure of the likelihood of an event
- mathematical foundation of common sense and good judgment
- 0 to 1 (or 0% to 100%)

Picture credit: https://www.mathsisfun.com/data/probability.html

★ Ξ → ★ Ξ →

3

< 🗇 🕨

Law of Large Numbers

- small number of experiments can have random fluctuations
- repeat an experiment a large number of times: outcome tends to the probability with much greater certainty

If It Either Happens or It Doesn't (Independent Events)

Picture credit: http://lriser03.blogspot.com/

- probability that an event will happen =
 - 1 probability it won't happen
- What is the probability of NOT rolling a 6 on a dice?

(문) (문)

æ

If It Either Happens or It Doesn't (Independent Events)

Picture credit: http://lriser03.blogspot.com/

- probability that an event will happen =
 - 1 probability it won't happen
- What is the probability of NOT rolling a 6 on a dice?
 - $1 \frac{1}{6} = \frac{5}{6} = \frac{\text{number of different outcomes}}{\text{total number of equally likely outcomes}}$ probability of rolling 1, 2, 3, 4 or 5.

Multiplication Rule for Independent Events

 If the probability of a person being left-handed is ¹/₁₀, and the probability of being blue-eyed is ¹/₃, then what is the probability of being left-handed and blue-eyed (assuming these are independent of each other)?

(* E) * E)

1

Multiplication Rule for Independent Events

- If the probability of a person being left-handed is ¹/₁₀, and the probability of being blue-eyed is ¹/₃, then what is the probability of being left-handed and blue-eyed (assuming these are independent of each other)?
- If independent, then the proportion of blue-eyed people among the left-handed people is the same as the proportion of blue-eyed people among the whole population, so

left-handed and blue-eyed = $\frac{1}{3}$ of $\frac{1}{10} = \frac{1}{3 \times 10} = \frac{1}{30}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Happy Birthday to You and You!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Happy Birthday to You and You!

Picture credits: http://www.murderousmaths.co.uk/books/366bday.htm

# people on the floor	probabil	ty of two people with same birthday
2	.0027	
3	.0082	
5	.0271	
20	.4114	
25	.5687	
F 0	0704	
	Dr. Sarah	Chance and Uncertainty in Daily Life