If It Either Happens or It Doesn't (Independent Events)

- probability that an event will happen = 1 - probability it won't happen
- What is the probability of NOT rolling a 6 on a dice?

If It Either Happens or It Doesn't (Independent Events)

- probability that an event will happen = 1 - probability it won't happen
- What is the probability of NOT rolling a 6 on a dice?
$1-\frac{1}{6}=\frac{5}{6}=\frac{\text { number of different outcomes }}{\text { total number of equally likely outcomes }}=$ probability of rolling $1,2,3,4$ or 5 .

Multiplication Rule for Independent Events

- If the probability of a person being left-handed is $\frac{1}{10}$, and the probability of being blue-eyed is $\frac{1}{3}$, then what is the probability of being left-handed and blue-eyed (assuming these are independent of each other)?

Multiplication Rule for Independent Events

- If the probability of a person being left-handed is $\frac{1}{10}$, and the probability of being blue-eyed is $\frac{1}{3}$, then what is the probability of being left-handed and blue-eyed (assuming these are independent of each other)?
- If independent, then the proportion of blue-eyed people among the left-handed people is the same as the proportion of blue-eyed people among the whole population, so
left-handed and blue-eyed $=\frac{1}{3}$ of $\frac{1}{10}=\frac{1}{3 \times 10}=\frac{1}{30}$

Happy Birthday to You and You!

Happy Birthday to You and You!

THREE PEOPLE'S CHANCES
 OF NOT SHARING A BIRTHDAY $=\frac{364}{365} \times \frac{363}{365}$
$=0.992$ OR 99.2%

\# people on the floor probability of two people with same birthday

20
25
50
.0027...
.0082...
.0271...
.4114...
.5687...
.9704...

