## What to Expect?

1) What is the expected value of grades in a class where engagement is $20 \%$, exams are $50 \%$ and projects are $30 \%$ if the current averages are 85, 90, and 70, respectively?
1. $\sim 81.7$
2. 83
3. 85
4. 100
5. other

## What to Expect?

1) What is the expected value of grades in a class where engagement is $20 \%$, exams are $50 \%$ and projects are $30 \%$ if the current averages are 85, 90, and 70, respectively?
1. $\sim 81.7$
2. 83
3. 85
4. 100
5. other

The grading scale is: $A \geq 93 ; 90 \leq A-<93 ; 87 \leq B+<90 \ldots$


## The WORLD FACTBOOK

2) In "The WORLD FACTBOOK," the CIA lists Swaziland (a small landlocked country in southern Africa) as having the highest "percentage of adults (aged 15-49) living with HIV/AIDS"
(https://www.cia.gov/library/publications/ the-world-factbook/rankorder/2155rank.html) as follows: $27.20 \%$ of that population and 220,000 people living with HIV
First solve $27.20 \% P=220,000$ to find the total population $P$ this statistic is meant to represent (round to the nearest whole person) and then calculate how many people are HIV negative?
1. 60
2. 199,940
3. 588,824
4. 808,824
5. other

## Decision Matrix/Payoff Matrix

Contestant 2: Friend Contestant 2: Foe Contestant 1: Friend \$7500//\$7500 0//\$15000 Contestant 1: Foe $\$ 15000 / / 0$

|  | Test+ | Test- |
| :--- | :--- | :--- |
| Person is HIV + | HIV + people $\times$ probability they test + |  |
| Person is HIV - |  |  |
| Total |  |  |

Would you support legislation for mandatory HIV testing?

## Benford's Law?

3) Below is country population data from 2018. Does it satisfy Benford's Law?
1. it fits perfectly
2. this proves it is fraudulent data and should lead to arrests
3. we should use a larger data set to have a better fit
4. what's a Benford's Law?
5. other
number of countries whose populations have
that first digit


## Benford's Law?

3) Below is country population data from 2018. Does it satisfy Benford's Law?
1. it fits perfectly
2. this proves it is fraudulent data and should lead to arrests
3. we should use a larger data set to have a better fit
4. what's a Benford's Law?
5. other



## Benford's Law and Fraud Detection



## overall county vote totals 3,007 counties in the US

## Who's No. 1 ?

Benford's Law expects $30.1 \%$ of numbers in a list of financial transactions to begin with '1.' Each successive digit should represent a progressively smaller proportion. Below, orange indicates the expected Benford frequencies. When digits stray from the pattern, fraud may be to blame.


Source: Dan Amiram, Columbia University


Picture credits:

```
http://suehpro.blogspot.com/2016/12/election-results-vs-benfords-law-and.html
https://www.wsj.com/articles/
```

accountants-increasingly-use-data-analysis-to-catch-fraud-1417804886

## Happy Birthday to You and You!

4) What is the probability to find a shared birthday in a group of 4 people? Assume independence and exclude February 29th.
1. $\sim .0164$
2. $\sim .5073$
3. $\sim .9836$
4. 4
5. other

## Happy Birthday to You and You!

4) What is the probability to find a shared birthday in a group of 4 people? Assume independence and exclude February 29th.
1. $\sim .0164$
2. $\sim .5073$
3. $\sim .9836$
4. 4
5. other


Picture credit: http://www.murderousmaths.co.uk/books/366bday.htm
no common birthday: $\frac{364}{365} \times \frac{363}{365} \times \frac{362}{365}$

## Tossing Around

5) What is the probability of getting exactly 3 heads if you toss a fair coin 4 times? Assume independence.
1. . 10
2. .25
3. . 50
4. 75
5. other


Picture credit: http://lriser03.blogspot.com/

## Tossing Around

5) What is the probability of getting exactly 3 heads if you toss a fair coin 4 times? Assume independence.
1. . 10
2. . 25
3. . 50
4. 75
5. other


Picture credit: http://lriser03.blogspot.com/
number of outcomes for 3 heads
total number of equally likely outcomes for all possibilities

## Tossing Around

5) What is the probability of getting exactly 3 heads if you toss a fair coin 4 times? Assume independence.
1. . 10
2. . 25
3. . 50
4. 75
5. other


Picture credit: http://lriser03.blogspot.com/
number of outcomes for 3 heads
total number of equally likely outcomes for all possibilities
4 possibilities for 3 heads: THHH, HTHH, HHTH, and HHHT
How many possible outcomes total? 2 choices for each toss, so multiply $2 \times 2 \times 2 \times 2$

