Role of chance and probability in real world situations

...helped bring mathematics into a more tangible thought process for me and gave further insight to how conceptual ideas connect to the world around us and our personal lives.

- quantitative measure of the likelihood of an event
- mathematical foundation of common sense and good judgment
- 0 to 1 (or 0\% to 100\%)
- law of large numbers
- experimental error provides an estimate of the inherent uncertainty associated with experimental procedures
- The probability of event E occurring =
number of different outcomes in E
total number of equally likely outcomes

If It Either Happens or It Doesn't (Independent Events)

- probability that an event will happen = 1 - probability it won't happen
- What is the probability of NOT rolling a 6 on a dice? $1-\frac{1}{6}=\frac{5}{6}=\frac{\text { number of different outcomes }}{\text { total number of equally likely outcomes }}=$ probability of rolling $1,2,3,4$ or 5 .
- If a test is 95% accurate for people who have a disease then it correctly tests positive 95% of the time, but incorrectly tests negative for them (false negative) 5\% of the time. Sensitivity is .95 .
- If a test is 99% accurate for people who don't have a disease then it correctly tests negative 99% of the time, but incorrectly tests positive for them (false positive) 1% of the time. Specificity is . 99.

Multiplication Rule for Independent Events

- If the probability of a person being left-handed is $\frac{1}{10}$, and the probability of being blue-eyed is $\frac{1}{3}$, then what is the probability of being left-handed and blue-eyed (assuming these are independent of each other)?

Multiplication Rule for Independent Events

- If the probability of a person being left-handed is $\frac{1}{10}$, and the probability of being blue-eyed is $\frac{1}{3}$, then what is the probability of being left-handed and blue-eyed (assuming these are independent of each other)?
- If independent, then the proportion of blue-eyed people among the left-handed people is the same as the proportion of blue-eyed people among the whole population, so
left-handed and blue-eyed $=\frac{1}{3}$ of $\frac{1}{10}=\frac{1}{3 \times 10}=\frac{1}{30}$

Dr. Sarah

Let Test A be 95\% accurate (sensitivity and specificity) and an independent Test B be 99% accurate. What is the probability that a positive person is actually infected?

Let Test A be 95\% accurate (sensitivity and specificity) and an independent Test B be 99\% accurate. What is the probability that a positive person is actually infected? Suppose the population of the US is p and that there are roughly $0.001 p$ people with the disease.

- How many infected people will test positive?

Let Test A be 95\% accurate (sensitivity and specificity) and an independent Test B be 99\% accurate. What is the probability that a positive person is actually infected? Suppose the population of the US is p and that there are roughly $0.001 p$ people with the disease.

- How many infected people will test positive?

$$
.95 \times .99 \times .001 p=0.0009405 p
$$

- How many non-infected people will test + (false positives)?

Let Test A be 95\% accurate (sensitivity and specificity) and an independent Test B be 99\% accurate. What is the probability that a positive person is actually infected? Suppose the population of the US is p and that there are roughly $0.001 p$ people with the disease.

- How many infected people will test positive?

$$
.95 \times .99 \times .001 p=0.0009405 p
$$

- How many non-infected people will test + (false positives)? $(1-.95) \times(1-.99) \times(p-.001 p)=.05 \times .01 \times .999 p=$ $0.0004995 p$

Let Test A be 95\% accurate (sensitivity and specificity) and an independent Test B be 99\% accurate. What is the probability that a positive person is actually infected? Suppose the population of the US is p and that there are roughly $0.001 p$ people with the disease.

- How many infected people will test positive?

$$
.95 \times .99 \times .001 p=0.0009405 p
$$

- How many non-infected people will test + (false positives)?
$(1-.95) \times(1-.99) \times(p-.001 p)=.05 \times .01 \times .999 p=$ $0.0004995 p$
- Probability people with $2+$ tests are actually infected? $0.0009405 p /$ total

Let Test A be 95\% accurate (sensitivity and specificity) and an independent Test B be 99\% accurate. What is the probability that a positive person is actually infected? Suppose the population of the US is p and that there are roughly $0.001 p$ people with the disease.

- How many infected people will test positive?

$$
.95 \times .99 \times .001 p=0.0009405 p
$$

- How many non-infected people will test + (false positives)?
$(1-.95) \times(1-.99) \times(p-.001 p)=.05 \times .01 \times .999 p=$ $0.0004995 p$
- Probability people with $2+$ tests are actually infected?
$0.0009405 p /$ total $=$
$0.0009405 p /(0.0009405 p+0.0004995 p)=.653125$.

Let Test A be 95\% accurate (sensitivity and specificity) and an independent Test B be 99\% accurate. What is the probability that a positive person is actually infected? Suppose the population of the US is p and that there are roughly $0.001 p$ people with the disease.

- How many infected people will test positive?
$.95 \times .99 \times .001 p=0.0009405 p$
- How many non-infected people will test + (false positives)?
$(1-.95) \times(1-.99) \times(p-.001 p)=.05 \times .01 \times .999 p=$ $0.0004995 p$
- Probability people with $2+$ tests are actually infected?
$0.0009405 p /$ total $=$
$0.0009405 p /(0.0009405 p+0.0004995 p)=.653125$.
- If Test A is positive and Test B is negative, probability of infection $=0.00019$.

