Role of chance and probability in real-world situations

...helped bring mathematics into a more tangible thought process for me and gave further insight to how conceptual ideas connect to the world around us and our personal lives.

- quantitative measure of a likelihood of an event from 0 to 1
- mathematical foundation of common sense and judgment
- law of large numbers
- experimental error provides an estimate of the inherent uncertainty associated with experimental procedures
- The probability of event E occurring =
number of different outcomes in E
total number of equally likely outcomes
- probability that an event will happen = 1 - it won't
- independent events have probabilities that multiply
- expected value-weighted average of probabilities
- x\% confidence interval gives likelihood of obtaining true population response within a range of margin of error

6357302788007031102045264443 _price-of-life-by-linda-cai.png
Let Test A be 95% accurate (sensitivity and specificity) and an independent Test B be 99\% accurate. What is the probability that a positive person is actually infected?

6357302788007031102045264443 _price-of-life-by-linda-cai.png
Let Test A be 95\% accurate (sensitivity and specificity) and an independent Test B be 99\% accurate. What is the probability that a positive person is actually infected? Suppose the population of the US is p and that there are roughly $0.001 p$ people with the disease.

- How many infected people will test positive?

Let Test A be 95\% accurate (sensitivity and specificity) and an independent Test B be 99\% accurate. What is the probability that a positive person is actually infected? Suppose the population of the US is p and that there are roughly $0.001 p$ people with the disease.

- How many infected people will test positive?

$$
.95 \times .99 \times .001 p=0.0009405 p
$$

- How many non-infected people will test + (false positives)?

Let Test A be 95\% accurate (sensitivity and specificity) and an independent Test B be 99\% accurate. What is the probability that a positive person is actually infected? Suppose the population of the US is p and that there are roughly $0.001 p$ people with the disease.

- How many infected people will test positive?

$$
.95 \times .99 \times .001 p=0.0009405 p
$$

- How many non-infected people will test + (false positives)?
$(1-.95) \times(1-.99) \times(p-.001 p)=.05 \times .01 \times .999 p=$ $0.0004995 p$

Let Test A be 95\% accurate (sensitivity and specificity) and an independent Test B be 99\% accurate. What is the probability that a positive person is actually infected? Suppose the population of the US is p and that there are roughly $0.001 p$ people with the disease.

- How many infected people will test positive?

$$
.95 \times .99 \times .001 p=0.0009405 p
$$

- How many non-infected people will test + (false positives)? $(1-.95) \times(1-.99) \times(p-.001 p)=.05 \times .01 \times .999 p=$ $0.0004995 p$
- Probability people with $2+$ tests are actually infected? $0.0009405 p /$ total

Let Test A be 95\% accurate (sensitivity and specificity) and an independent Test B be 99\% accurate. What is the probability that a positive person is actually infected? Suppose the population of the US is p and that there are roughly $0.001 p$ people with the disease.

- How many infected people will test positive?

$$
.95 \times .99 \times .001 p=0.0009405 p
$$

- How many non-infected people will test + (false positives)?
$(1-.95) \times(1-.99) \times(p-.001 p)=.05 \times .01 \times .999 p=$ $0.0004995 p$
- Probability people with $2+$ tests are actually infected?
$0.0009405 p /$ total $=$
$0.0009405 p /(0.0009405 p+0.0004995 p)=.653125$.

Let Test A be 95\% accurate (sensitivity and specificity) and an independent Test B be 99\% accurate. What is the probability that a positive person is actually infected? Suppose the population of the US is p and that there are roughly $0.001 p$ people with the disease.

- How many infected people will test positive?

$$
.95 \times .99 \times .001 p=0.0009405 p
$$

- How many non-infected people will test + (false positives)?
$(1-.95) \times(1-.99) \times(p-.001 p)=.05 \times .01 \times .999 p=$ $0.0004995 p$
- Probability people with $2+$ tests are actually infected?
$0.0009405 p /$ total $=$
$0.0009405 p /(0.0009405 p+0.0004995 p)=.653125$.
- If Test A is positive and Test B is negative, probability of infection $=0.00019$.

