Analyzing Probability and Chance in HIV Testing

Controlled laboratory testing of saliva determined the sensitivity and specificity of the OraQuick Advance HIV test.
a) Sensitivity: probability the test correctly identifies someone who is HIV+ as positive $=98.4 \%=.984$
b) False Negative: HIV + person who falsely tests negative. The probability is $1-.984=.016$
c) Specificity: probability the test correctly identifies someone who is HIV- as negative $=99.6 \%=.996$
d) False Positive: HIV- person who falsely tests positive. The probability is $1-.996=.004$

Globally, prevalence of HIV in prisons is between 2 and 50 times the HIV rate of the general population. In 2010, about 20,000 of the $1,570,000$ inmates in state and federal prisons in the US were HIV+.

1) What is the probability that a prisoner in the US is HIV + (20,000/1,570,000) -leave this as a decimal and round to 4 decimal places?
2) What is the probability that a prisoner is HIV-? Leave as a decimal and round to 4 decimal places.
3) Suppose we have a prison with 100,000 prisoners. Complete the number of people in each of the 6 cells in the decision matrix below using the above probabilities. Show work and round to whole numbers of people:

	Test +	Test -
Person is HIV +	True positive people multiply your response in 1) by 100,000 for the number of HIV + people then multiply that number by the probabil- ity they correctly test + in a)	False negative people
Person is HIV-	False positive people multiply your response in 2) by 100,000 for the number of HIV- people then multiply that number by the probabil- ity they falsely test + in d)	True negative people
Total	Total who test +	Total who test -

4) Approximately what percentage of prisoners who test positive is actually HIV+ (i.e. true positive people/total people who test positive)? Show work and round to one decimal place.
