10.2 Taylor Series Group Work Target Practice

Identify this as a Taylor series of a known function and sub for x to find the sum of $1-\frac{3^{2}}{2!}+\frac{3^{4}}{4!}+\ldots$.

1) Which is it? $e^{3}, \cos (3), \sin (3)$, or $\frac{1}{1-3}$
2) What do the other Taylor series look like?
b) First, note that $1-\frac{3^{2}}{2!}+\frac{3^{4}}{4!}+\ldots$ is an alternating series that has even powers of 3 , which fits the even function $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} \ldots=\sum_{i=0}^{\infty}(-1)^{i} \frac{x^{2 i}}{(2 i)!}$. When we substitute $\mathrm{x}=3$, we see that it identically matches, so this sum is $\cos (3)=\sum_{i=0}^{\infty}(-1)^{i} \frac{3^{2 i}}{(2 i)!}$, or equivalently $\sum_{n=0}^{\infty}(-1)^{n} \frac{3^{2 n}}{(2 n)!}$ (as i and n are both common in various contexts).

For the other Taylor series, plug in 3 for x :
a) $e^{x}=1+x+\frac{x^{2}}{2!}+\ldots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, so $e^{3}=1+3+\frac{3^{2}}{2!}+\ldots=\sum_{n=0}^{\infty} \frac{3^{n}}{n!}$
c) $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \ldots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$ so $\sin (3)=3-\frac{3^{3}}{3!}+\frac{3^{5}}{5!} \ldots=\sum_{n=0}^{\infty}(-1)^{n} \frac{3^{2 n+1}}{(2 n+1)!}$
d) $\frac{1}{1-x}=1+x+x^{2}+\ldots=\sum_{n=0}^{\infty} x^{n}$ so $\frac{1}{1-3}=1+3+3^{2}+\ldots=\sum_{n=0}^{\infty} 3^{n}$

The first 3 have infinite radius of convergence and the last 2 have $r=1$.

Compute the Taylor series for $f(x)=\ln x$ at the point $a=1$.

n	$f^{(n)}(x)$	$f^{(n)}(a)$	Taylor Term $\frac{f^{(n)}(a)}{n!}(x-a)^{n}$
0	$\ln (\mathrm{x})$	$\frac{0}{0!}(x-1)^{0}=0($ note $0!=1)$	
1	$\frac{1}{x}=x^{-1}$	$\frac{1}{1}=1$	$\frac{1}{1!}(x-1)^{1}=(x-1)$
2	$-x^{-2}$	$-1^{-2}=-1$	$\frac{-1}{2!}(x-1)^{2}=-\frac{1}{2}(x-1)^{2}$
3	$--2 x^{-3}=2 x^{-3}$	$2(1)^{-3}=2$	$\frac{2}{3!}(x-1)^{3}=\frac{2}{3 \cdot 2!}(x-1)^{3}=\frac{1}{3 \cdot}(x-1)^{3}$
4	$-3 \cdot 2 x^{-4}$	$-6(1)^{-4}=-6$	$\frac{-6}{4!}(x-1)^{4}=\frac{-6}{4 \cdot 3!}(x-1)^{4}=\frac{-1}{4 \cdot}(x-1)^{4}$

Notice the cancellation in the Taylor terms that allows reduction from n ! to n - this worked because as those powers pulled down that was exactly $(n-1)!$ and $\frac{(n-1)!}{n!}=\frac{(n-1)!}{n(n-1)!}=\frac{1}{n}$

The Taylor polynomial of degree 4 is the sum of the Taylor terms:
$P_{4}(x)=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\frac{1}{4}(x-1)^{4}+\ldots$
From here we can see the pattern of the alternating series and the coefficients of $\pm \frac{1}{n}$, so the Taylor series is $\sum_{1}^{\infty}(-1)^{n+1} \frac{1}{n}(x-1)^{n}$. The first nonzero term, the degree 1 term of $(x-1)$, is positive, so we can see it should be $(-1)^{n+1}$ rather than $(-1)^{n}$.

