10.4 Error Bounds Solutions

1. Use the Lagrange Error Bound/Taylor's Inequality to find the maximum possible error in estimating e^{-2} using the Taylor polynomial of degree 8 about 0 for $f(x) = e^x$.

The Lagrange Error Bound/Taylor's Inequality is written as $|f(x) - P_n(x)| \le \frac{M}{(n+1)!}|x-a|^{n+1}$, with $|f^{(n+1)}| \le M$ for *a* to *x*. Plug in n = 8: $|f(x) - P_8(x)| \le \frac{M}{(8+1)!}|x-a|^{8+1} = \frac{M}{(9)!}|x-a|^9$, with $|f^{(9)}| \le M$ for *a* to *x*.

Here a is the center, 0, where there is no error, and x is how far out we are going from the center, in this case to -2. So we need the 9th derivative of e^x to find M. Since $\frac{d}{dx}e^x = e^x$, each derivative is the same. To find M we need to bound the absolute value of the 9th derivative on the interval from the center 0 to -2. e^x , is an increasing function, so it attains its maximum on the right most point, which is 0 in this case. Thus the maximum is $e^0 = 1 = M$.

Hence the error bound in using $P_8(x)$ to approximate e^x here is $\frac{1}{(9)!}|-2-0|^9 = \frac{2^9}{9!} \approx .0014$

2. Compute the linear approximation of $\arctan x$ about 0. Then use the Lagrange Error Bound/Taylor's Inequality to find the maximum possible error in using it to estimate $\arctan \frac{1}{2}$.

First we compute the degree 1 Taylor polynomial about a = 0:

We add the Taylor terms: $P_1(x) = 0 + x = x$.

Next we'll use the Lagrange Error Bound/Taylor's Inequality to find the maximum possible error in using $P_1(x) = x$ to estimate $\arctan \frac{1}{2}$.

Plug in
$$n = 1$$
: $|f(x) - P_1(x)| \le \frac{\tilde{M}}{(1+1)!}|x-a|^{1+1} = \frac{M}{(2)!}|x-a|^2$, with $|f^{(2)}| \le M$ for a to x .

Here *a* is the center, 0, where there is no error, and *x* is how far out we are going from the center, in this case to $\frac{1}{2}$. So we need the 2nd derivative of $\arctan x$ to find *M*. We already computed the first derivative $\frac{1}{1+x^2} = (1+x^2)^{-1}$. Apply power rule and chain rule to take the derivative: $f^{(2)}(x) = -(1+x^2)^{-2}2x = \frac{-2x}{(1+x^2)^2}$

To find M we need to bound the absolute value of the 2nd derivative on the interval from the center 0 to $\frac{1}{2}$. If we plug 0 in to $|f^{(2)}(x)| = |\frac{-2x}{(1+x^2)^2}|$ we have 0, and if we plug $\frac{1}{2}$ in we have $\frac{2\frac{1}{2}}{(1+\frac{1}{2}^2)^2}$. The absolute value of the derivative increases over that interval, so the bound is achieved at the rightmost endpoint. Thus the maximum is $M = \frac{2\frac{1}{2}}{(1+\frac{1}{2}^2)^2}$.

Hence the error bound in using x to approximate $\arctan x$ here is $\frac{\frac{2\frac{1}{2}}{(1+\frac{1}{4})^2}}{2!}|0-\frac{1}{2}|^2 = \frac{\frac{2\frac{1}{2}}{(1+\frac{1}{4})^2}}{2!}(\frac{1}{2})^2 = .08$