### 10.4 Error Bounds Solutions

1. Use the Lagrange Error Bound/Taylor's Inequality to find the maximum possible error in estimating $e^{-2}$ using the Taylor polynomial of degree 8 about 0 for $f(x)=e^{x}$. The Lagrange Error Bound/Taylor's Inequality is written as $\left|f(x)-P_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1}$, with $\left|f^{(n+1)}\right| \leq M$ for $a$ to $x$. Plug in $n=8:\left|f(x)-P_{8}(x)\right| \leq \frac{M}{(8+1)!}|x-a|^{8+1}=\frac{M}{(9)!}|x-a|^{9}$, with $\left|f^{(9)}\right| \leq M$ for $a$ to $x$.
Here $a$ is the center, 0 , where there is no error, and $x$ is how far out we are going from the center, in this case to -2 . So we need the 9 th derivative of $e^{x}$ to find $M$. Since $\frac{d}{d x} e^{x}=e^{x}$, each derivative is the same. To find $M$ we need to bound the absolute value of the 9 th derivative on the interval from the center 0 to $-2 . e^{x}$, is an increasing function, so it attains its maximum on the right most point, which is 0 in this case. Thus the maximum is $e^{0}=1=M$.
Hence the error bound in using $P_{8}(x)$ to approximate $e^{x}$ here is $\frac{1}{(9)!}|-2-0|^{9}=\frac{2^{9}}{9!} \approx .0014$
2. Compute the linear approximation of $\arctan x$ about 0 . Then use the Lagrange Error Bound/Taylor's Inequality to find the maximum possible error in using it to estimate $\arctan \frac{1}{2}$.
First we compute the degree 1 Taylor polynomial about $a=0$ :

$$
\begin{array}{cccc}
n & f^{(n)}(x) & f^{(n)}(a) & \text { Taylor Term } \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
0 & \arctan x & \arctan 0=0 & \frac{0}{0!}(x-0)^{0}=0(\text { note } 0!=1) \\
1 & \frac{1}{1+x^{2}} & \frac{1}{1+0^{2}}=1 & \frac{1}{1!}(x-0)^{1}=x
\end{array}
$$

We add the Taylor terms: $P_{1}(x)=0+x=x$.
Next we'll use the Lagrange Error Bound/Taylor's Inequality to find the maximum possible error in using $P_{1}(x)=x$ to estimate $\arctan \frac{1}{2}$.
Plug in $n=1:\left|f(x)-P_{1}(x)\right| \leq \frac{M}{(1+1)!}|x-a|^{1+1}=\frac{M}{(2)!}|x-a|^{2}$, with $\left|f^{(2)}\right| \leq M$ for $a$ to $x$.
Here $a$ is the center, 0 , where there is no error, and $x$ is how far out we are going from the center, in this case to $\frac{1}{2}$. So we need the 2 nd derivative of $\arctan x$ to find $M$. We already computed the first derivative $\frac{1}{1+x^{2}}=\left(1+x^{2}\right)^{-} 1$. Apply power rule and chain rule to take the derivative: $f^{(2)}(x)=-\left(1+x^{2}\right)^{-2} 2 x=\frac{-2 x}{\left(1+x^{2}\right)^{2}}$
To find $M$ we need to bound the absolute value of the 2nd derivative on the interval from the center 0 to $\frac{1}{2}$. If we plug 0 in to $\left|f^{(2)}(x)\right|=\left|\frac{-2 x}{\left(1+x^{2}\right)^{2}}\right|$ we have 0 , and if we plug $\frac{1}{2}$ in we have $\frac{2 \frac{1}{2}}{\left(1+\frac{1}{2}^{2}\right)^{2}}$. The absolute value of the derivative increases over that interval, so the bound is achieved at the rightmost endpoint. Thus the maximum is $M=\frac{2 \frac{1}{2}}{\left(1+\frac{1}{2}^{2}\right)^{2}}$.
Hence the error bound in using $x$ to approximate $\arctan x$ here is $\frac{\frac{2 \frac{1}{2}}{\left(1+\frac{1}{4}\right)^{2}}}{2!}\left|0-\frac{1}{2}\right|^{2}=\frac{\frac{2 \frac{1}{2}}{\left(1+\frac{1}{4}\right)^{2}}}{2!}\left(\frac{1}{2}\right)^{2}=.08$

