11.1 Testing DEs

11.1 really does come down to this math comic:

Alex gets the connection!

1. You pour a cup of coffee at 180° and so Newton's law of cooling applies. Let T be the temperature and t be time. Then Newton's law of cooling specifies that the differential equation is $\frac{d T}{d t}=-k(T-72)$, where 72° is the temperature of the room. Is $T(t)=72+108 e^{-k t}$ a solution to the differential equation?
We check by plugging in to $\frac{d T}{d t}=-k(T-72)$ —we'll need the derivative of $T(t)=72+108 e^{-k t}$ for the left side, so use chain rule: $T^{\prime}(t)=0+108 e^{-k t}(-k)$. Now we plug in the derivative to the left side and the proposed solution to the right side, and we see if they satisfy the differential equation:
$108 e^{-k t}(-k)=\frac{d T}{d t} \stackrel{?}{=}-k(T-72)=-k\left(72+108 e^{-k t}-72\right)=-k 108 e^{-k t}$.
These are equal, so it is a solution.

Notice that 108 actually comes from the difference between the coffee and room temperature: 180-72 $=108$. These form the basis of many real-life growth and decay problems, including Newton's law of cooling and population modeling, to name a few.
2. Which of the following is a solution to $y^{\prime}=k y ? y(t)=e^{k t}, y(t)=e^{k t+5}=e^{k t} e^{5}, y(t)=2 e^{k t}$?

We check by plugging each proposed solution into $y^{\prime}=k y$ to see if it works-we'll need the derivative for the left side, so we'll use chain rule:
a) $y(t)=e^{k t} \quad k e^{k t}=y^{\prime} \stackrel{?}{=} k y=k e^{k t}$. Yes it is a solution.
b) $y(t)=e^{k t+5}=e^{k t} e^{5} \quad k e^{k t+5}=y^{\prime} \stackrel{?}{=} k y=k e^{k t+5}$. Yes it is a solution.
c) $y(t)=2 e^{k t} \quad k 2 e^{k t}=y^{\prime} \stackrel{?}{=} k y=k 2 e^{k t}$. Yes it is a solution.
3. Do either of $y(t)=e^{k t+2}$ or $y(t)=2 e^{k t}$ work when $y(0)=2$?

We saw above that each of these are solutions, but the question here is whether they solve the given initial condition. Since $y(0)=2$, we plug in $\mathrm{t}=0$ and see whether $\mathrm{y}=2$:
a) $y(t)=e^{k t+2} \quad y(0)=e^{k 0+2}=e^{2} \neq 2$, so this is not a solution for $y(0)=2$.
b) $y(t)=2 e^{k t}$
$y(0)=2 e^{k 0}=2 e^{0}=2 \cdot 1=2$, so yes this is a solution for this initial condition.

