9.2 Geometric Series Review

- Geometric Series $a=$ starting term, $x=$ constant ratio of each term to preceding one $\sum_{i=0}^{\infty} a x^{i}=\frac{a}{1-x}$ when $|x|<1$ and diverges otherwise $n^{\text {th }}$ partial sum (1st n terms added): $\sum_{i=0}^{n-1} a x^{i}=\frac{a\left(1-x^{n}\right)}{1-x}$ for $x \neq 1$

Example: $\sum_{i=0}^{n-1} \frac{1}{2} \frac{1}{2}=\sum_{i=1}^{n} \frac{1}{2}^{i}$ careful of starting \# and index

9.3: Terms Not Getting Smaller

- terms not getting smaller: $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or DNE, then partial sums diverge and so does the series. Example: $\sum_{n=1}^{\infty} \frac{5+n}{2 n+1}$ CAUTION: If $\lim _{n \rightarrow \infty} a_{n}=0$ then the test is inconclusive and we must select another test.

9.3:Linearity for Convergence or Divergence

- Linearity: $\sum_{n=1}^{\infty} a_{n}$ converges to S and $\sum_{n=1}^{\infty} b_{n}$ converges to
T, and k is any constant, then $\sum_{n=1}^{\infty} k a_{n}+b_{n}$ converges to $k S+T$.
Application 1: add two geometric series (converge to sum) Application 2: add divergent \& convergent series (diverge)
Example: $\sum_{n=1}^{\infty} \frac{1^{n}}{}{ }^{n}+(-1)^{n}$.
Diverges, because if it were convergent, then subtract convergent $\sum_{n=1}^{\infty} \frac{1^{n}}{}{ }^{n}$ and the result should converge by linearity, but doesn't!

9.3: Integral Test Bounds

If series has terms that are decreasing and positive, the integral test not only tells us about convergence, but also bounds the series:

THE MATH GENIE

Harmonic series $\sum_{N=1}^{\infty} \frac{1}{N}$ diverges by growing to ∞ slowly! Why? Integral Test
$\int_{1}^{\infty} \frac{1}{x} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x} d x=$

THE MATH GENIE

Harmonic series $\sum_{N=1}^{\infty} \frac{1}{N}$ diverges by growing to ∞ slowly! Why? Integral Test

$$
\int_{1}^{\infty} \frac{1}{x} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x} d x=\left.\lim _{b \rightarrow \infty} \ln (x)\right|_{1} ^{b}=
$$

THE MATH GENIE

Harmonic series $\sum_{N=1}^{\infty} \frac{1}{N}$ diverges by growing to ∞ slowly! Why? Integral Test
$\int_{1}^{\infty} \frac{1}{x} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x} d x=\left.\lim _{b \rightarrow \infty} \ln (x)\right|_{1} ^{b}=\lim _{b \rightarrow \infty} \ln (b)-\ln (1)$ diverges so series does too

9.3: Integral Test

- For $\sum_{1}^{\infty} a_{n}$, if the terms are decreasing and $a_{n}>0$ then the series behaves the same way as $\int_{1}^{\infty} a_{n} d n$.
So look for decreasing and positive terms (eventually) that we can integrate (Calc I or Chap 7) + improper integral. Otherwise the test does NOT help.

