What's the Point of Calculus?

□ ▶ ▲ 三 ▶ ▲ 三 ▶ → 三 → りく(や

What's the Point of Calculus?

 $\int \frac{1}{cabin} d(cabin)$

- quantifies change
- provides a framework for modeling
- provides a way to deduce predictions
- instantaneous change is a lot simpler than changes over finite intervals of time

> < 臣 > < 臣 > <</p>

What's the Point of Calculus?

 $\int \frac{1}{cabin} d(cabin)$

- quantifies change
- provides a framework for modeling
- provides a way to deduce predictions
- instantaneous change is a lot simpler than changes over finite intervals of time
- so useful
 - finance: portfolio optimization
 - chemistry: rate of reaction
 - physics: mechanics
 - cs and engineering: machine learning (ex: proportional integral derivative controller)
 - geology: radioactive age equation, heat flow

回とくほとくほとし

Calc I Topics and Methods Will be Helpful in Calc II!

- pattern recognition
- algorithmic thinking
- local to global

Review of Trigonometry and Chapter 3 Derivatives

 $\int_{-\infty}^{\infty} 3x^2 dx$

Dr. Sarah Math 1120: Calculus and Analytic Geometry II

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Review of Trigonometry and Chapter 3 Derivatives

$$\int_0^{lce} 3x^2 dx$$

$$\frac{d}{dx}(tan(x)) = \sec^2(x)$$

Composition of functions:
$$\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$$

Dr. Sarah Math 1120: Calculus and Analytic Geometry II

- 本語 医 本語 医 三語

Review of Chapter 5 and 6 Integration

- 5.2: Area under curve
- 5.3: FTC

• 5.4: Average value of
$$f = \frac{1}{b-a} \int_a^b f(x) dx$$

• 6.2: Antiderivatives $\int x^n =$

(E) < (E)</p>

Review of Chapter 5 and 6 Integration

- 5.2: Area under curve
- 5.3: FTC

• 5.4: Average value of
$$f = \frac{1}{b-a} \int_a^b f(x) dx$$

• 6.2: Antiderivatives $\int x^n = \frac{x^{n+1}}{n+1} + c$

A E > A E >