What's the Point of Calculus?

$\int \frac{1}{\text { cabin }} d($ cabin $)$

What's the Point of Calculus?

$\int \frac{1}{\text { cabin }} d$ (cabin)

- quantifies change
- provides a framework for modeling
- provides a way to deduce predictions
- instantaneous change is a lot simpler than changes over finite intervals of time

What's the Point of Calculus?

$\int \frac{1}{\text { cabin }} d$ (cabin)

- quantifies change
- provides a framework for modeling
- provides a way to deduce predictions
- instantaneous change is a lot simpler than changes over finite intervals of time
- so useful
- finance: portfolio optimization
- chemistry: rate of reaction
- physics: mechanics
- cs and engineering: machine learning (ex: proportional integral derivative controller)
- geology: radioactive age equation, heat flow

Calc I Topics and Methods Will be Helpful in Calc II!

- pattern recognition
- algorithmic thinking
- local to global

(6) mathscoop com

Review of Trigonometry and Chapter 3 Derivatives

$\int_{0}^{l c e} 3 x^{2} d x$

Review of Trigonometry and Chapter 3 Derivatives

$\int_{0}^{l c e} 3 x^{2} d x$
$\frac{d}{d x}(\tan (x))=\sec ^{2}(x)$
Composition of functions: $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

Review of Chapter 5 and 6 Integration

- 5.2: Area under curve
- 5.3: FTC
- 5.4: Average value of $f=\frac{1}{b-a} \int_{a}^{b} f(x) d x$
- 6.2: Antiderivatives
$\int x^{n}=$

Review of Chapter 5 and 6 Integration

- 5.2: Area under curve
- 5.3: FTC
- 5.4: Average value of $f=\frac{1}{b-a} \int_{a}^{b} f(x) d x$
- 6.2: Antiderivatives

$$
\int x^{n}=\frac{x^{n+1}}{n+1}+c
$$

