Applications of Differential Equations

Throw a ball in the air-where does it go? Put a pot on the stove—how does the heat spread? Blow a soap bubble—what shape will it take? Flip a switch and... a light turns on! All of these phenomena are governed by simple differential equations that have been known and studied for over 100 years. Nature at a small scale—electrons, protons and other particles-is governed by more complicated laws; these also involve differential equations. [Karen Uhlenbeck, Mathematics: The Equations of Nature]

$$
\frac{d y}{d t}=k y
$$

Many objects grow and shrink proportional to the amount present

- Glacier
- Exponential growth at a continuous rate
- Compound interest: $\frac{d B}{d t}=r B$, where r is the interest rate, or other economic systems like those modeling labor
- Drug metabolism: $\frac{d A}{d t}=k A$, where k is negative
- Pollution in a lake: $\frac{d Q}{d t}=-r \frac{Q}{V}$, where r is the rate of flow, V is the volume of a lake, and no new pollution is introduced
- Snowball melts rate proportional to surface area (write r in terms of V)
- Sometimes all we know about a given system is its rate of change

$\frac{d T}{d t}=-k(T-$ surrounding temperature $), k>0$

Heating and Cooling

- cooling: coffee, object in refrigerator, deceased body in forensic science...
- warming: cooking in oven...

$\frac{d y}{d t}=$ rate $1-$ rate 2

- mixing problems: rate of salt in - rate of salt out
- population: birth rate - death rate
- weight : pounds/calorie (intake - maintenance)

Newton's Law of Cooling

You pour a cup of coffee at 180°. Assume that 72° is the temperature of the room.
Define variables and write the DE and the initial condition: differential equation initial condition

Newton's Law of Cooling

You pour a cup of coffee at 180°. Assume that 72° is the temperature of the room.
Define variables and write the DE and the initial condition: differential equation initial condition
T temperature of the cooling coffee, t be time, and $k>0$ $D E: \frac{d T}{d t}=-k(T-72)$ by Newton's law of cooling initial condition: $T(0)=180$
http://www.nerdytshirt.com/cool.html

Growth and Decay: Glacier

- Early stages, populations may change rapidly at a rate proportional to the current population Example: In 2007 Grinnell Glacier in Glacier National Park covered about 142 acres and was shrinking exponentially at a rate of 4.3% of it's acreage each year.
- Define variables and write the DE and the initial condition: differential equation initial condition

Growth and Decay: Glacier

- Early stages, populations may change rapidly at a rate proportional to the current population Example: In 2007 Grinnell Glacier in Glacier National Park covered about 142 acres and was shrinking exponentially at a rate of 4.3% of it's acreage each year.
- Define variables and write the DE and the initial condition: differential equation initial condition
- If the model continues to hold, when will the glacier be half of it's 2007 size? When will it effectively disappear?

Carbon-14 Dating

- Approximately what percentage of its carbon-14 should remain in a painting by Johannes Vermeer (1632-1675)? The half-life of carbon-14 is about 5730 years.

CARBON DATING

Team led by Willard F. Libby developed radiocarbon method. Nobel Prize in Chemistry in 1960: for his method to use Carbon-14 for age determinations in archaeology, geology, geophysics, and other branches of science

Mixing Problems

A tank contains 100 L of brine with a concentration of 0.2 kg of salt per liter (i.e. $.2 \mathrm{~kg} / \mathrm{L} \times 100 \mathrm{~L}=20 \mathrm{~kg}$ salt). Pure water enters the tank at a rate of $10 \mathrm{~L} / \mathrm{min}$ and the resulting solution, which is stirred continuously, runs out at the same rate.

- Define variables and write the DE and the initial condition: differential equation initial condition

Mixing Problems

A tank contains 100 L of brine with a concentration of 0.2 kg of salt per liter (i.e. $.2 \mathrm{~kg} / \mathrm{L} \times 100 \mathrm{~L}=20 \mathrm{~kg}$ salt). Pure water enters the tank at a rate of $10 \mathrm{~L} / \mathrm{min}$ and the resulting solution, which is stirred continuously, runs out at the same rate.

- Define variables and write the DE and the initial condition: differential equation initial condition $S \mathrm{~kg}$ salt, t minutes $\frac{d S}{d t}=$ rate of salt in - rate of salt out $=0-$ rate of salt out

https://abstrusegoose.com/strips/all_i_see_are_equations.PNG

Dr. Sarah
Math 1120: Calculus and Analytics Geometry II

DEs and PDEs: Existence and Uniqueness of Solutions?
Differential equations can be very hard to solve. In fact, a large number of them can't be solved at all! At least not numerically. Some qualitative information about the overall behavior of the system can sometimes still be learned-this is the field of study of dynamical systems [Karen Uhlenbeck, Mathematics: The Equations of Nature]

Euler-Lagrange equations: L measures energy in a physical system Emmy Noether's theorem (roughly): Symmetric systems have corresponding conservation laws

