9.2 Geometric Series

- series: add the terms in a sequence
- geometric series-ratio between any two consecutive terms is constant: $\sum_{i=0}^{n-1} a x^{i}=a+a x+a x^{2}+\ldots+a x^{n-1}$
- sum of the first n terms? $\frac{a\left(1-x^{n}\right)}{1-x}$. Careful of \# terms and starting index
- finite geo series always converges.
- ∞ geo series converge? $\lim _{n \rightarrow \infty} \frac{a\left(1-x^{n}\right)}{1-x}$ if $|x|<1$: $\frac{a}{1-x}$
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8} \ldots=\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \frac{1}{2} \frac{1}{2}^{i}=\frac{.5}{1-.5} \sum_{i=0}^{\infty} \frac{1}{1} \frac{1}{2}^{i}=\sum_{i=1}^{\infty} \frac{1}{2}^{i}$
Zeno's Paradox

Drug Doses, Periodic Payments and More

250 mg every 6 hours, when 4% of the drug remains. How much is in the body after the $n^{\text {th }}$ dose? Does the infinite series converge (i.e. stabilize in the body)?

Geometric Series? Constant ratio between consecutive terms?

Discussion Question

1. Is this geometric?

$$
5-10+20-40+80 \ldots
$$

(a) yes and I have a good reason why
(0) yes but I am unsure of why
(2) no, although it is a series
(1) no, it is a sequence, not a series

Discussion Question

2. Is this geometric? $\quad 2(.1)^{2}+2(.1)^{3}+\ldots+2(.1)^{11}$
(a) yes and I have a good reason why
(2) yes but I am unsure of why
(2) no, although it is a series
(1) no, it is a sequence, not a series

Discussion Question

3. We deposit $\$ 150$ per month (at the end of each month) into an account that pays 1.2% each month. What do we have in 3 years if the interest rate doesn't change?
(a) $\sum_{i=0}^{35} 150(1+.012)^{i}$
(D) $\frac{150\left(1-1.012^{36}\right)}{1-1.012}$
() both of the above
(1) none of the above

Discussion Question

4. We drop a ball from 20 ft and the ball bounces $2 / 3$ as high each time as the last. Can the total vertical distance (up and down) after the $n^{\text {th }}$ bounce hits the ground be expressed as almost a geometric series?
(a) yes

$$
20 \downarrow 20 \frac{2}{3} \uparrow \downarrow 20 \frac{2}{3} \quad 20\left(\frac{2}{3}\right)^{2} \downarrow \uparrow 20\left(\frac{2}{3}\right)^{2}
$$

(D) no

History and Applications

- Archimedes: compute the area enclosed by a parabola and a straight line using an infinite number of triangles and sum of geometric series
- early calculus: series represented geometric quantities and were manipulated using methods extended from finite procedures
- geometric series arise in many places, like in the examples we mentioned
- physical chemistry such as harmonic oscillator
- important to the study of Taylor series, via comparison

