9.2 Geometric Series versus 9.3 p-Series

- ratio between any two consecutive terms is constant.
sum of the first n terms: $\frac{a\left(1-x^{n}\right)}{1-x}$. Careful of \#terms and starting index. $\lim _{n \rightarrow \infty} \frac{a\left(1-x^{n}\right)}{1-x}=\frac{a}{1-x}$ if $|x|<1$
- $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.
$\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8} \ldots$ geo series, $|x|=.5<1$ conv to $\frac{.5}{1-.5}$
$\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\frac{1}{4}+\frac{1}{9} \ldots p$ series: $p=2>1$ conv by integral test: terms dec + :
$\int_{1}^{\infty} \frac{1}{x^{2}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} x^{-2} d x=\left.\lim _{b \rightarrow \infty} \frac{x^{-1}}{-1}\right|_{1} ^{b}=0--1$
$1 \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}} \leq 1+$ first term $=1+\frac{1}{1^{2}}=1+1$

Sequence versus Series

Dr. Sarah

Math 1120: Calculus and Analytic Geometry II
(1) Is this a geometric series? yes no

Geometric Series: $\sum_{i=0}^{\infty} a x^{i}$ where x is the common ratio
and a is a constant. $\sum_{i=0}^{n} a x^{i}=\frac{a\left(1-x^{n+1}\right)}{1-x}$.
$\sum_{i=0}^{\infty} a x^{i}=\frac{a}{1-x}$ provided $|x|<1$.
(2) Can we apply the Terms not Going to 0 ? yes no Terms not Going to 0 : For $\sum a_{n}$, if the $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the infinite series does not converge.
(3) Are the terms decreasing and positive eventually, and if so is this an integral we can do? yes no Integral Test: For $\sum a_{n}$, if the terms are decreasing and $a_{n}>0$, then the series behaves the same way as $\int_{a}^{\infty} a_{n} d n, \& \int_{a}^{\infty} f(x) d x \leq \sum a_{n} \leq 1$ st term $+\int_{a}^{\infty} f(x) d x$.

