
7.5 Numerical Methods
Approximates integrals we can’t evaluate directly, including
discrete data
n= number of intervals, 4x = b−a

n , xi+1 = xi +4x
Left(4) = f (x0)4x + f (x1)4x + f (x2)4x + f (x3)4x left endpoints

Right(4) = f (x1)4x + f (x2)4x + f (x3)4x + f (x4)4x right points

left: right:

Trap(4) = Left(4)+Right(4)
2 connect left and right points

Mid(4) =
f (x0+x1

2 )4x + f (x1+x2
2 )4x + f (x2+x3

2 )4x + f (x3+x4
2 )4x midpoints

trapezoid: midpoint:
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Simpson’s Rule

No not that Simpson!
Thomas Simpson (1710–1761)
Johannes Kepler (1571–1630), volume of a wine barrel
2Mid(n)+Trap(n)

3

fits parabolas
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Clicker Question

1. Which is true for y = x2 when x ≥ 0?
a) Right(n) and Trap(n) give overestimates
b) Left(n) and Mid(n) give overestimates
c) Right(n) and Mid(n) give underestimates
d) Left(n) and Trap(n) give underestimates
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Clicker Question

2. Which is true for y = e−x when x ≥ 0?
a) Mid(n) ≤

∫
f (x)dx ≤ Trap(n)

b) Trap(n) ≤
∫

f (x)dx ≤ Mid(n)
c) it depends on n
d) no way to tell
e) other
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Even More History and Applications

Many applications do not have a closed form, so numerical
approximations are needed
2016 analysis–Babylonians used trapezoids under curve
for Jupiter’s speed over time. Area approximates degrees
of movement

14th century in Europe
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