
9.2 Geometric Series Review
Geometric Series a= starting term, x=constant ratio of
each term to preceding one
∞∑

i=0
ax i = a

1−x when|x | < 1 and diverges otherwise

nth partial sum (1st n terms added):
n−1∑
i=0

ax i = a(1−xn)
1−x for x 6= 1

Example:
n−1∑
i=0

1
2

1
2

i
=

n∑
i=1

1
2

i
careful of starting # and index
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9.3 Series: Partial Sums More Generally∞∑
n=1

an and convergence? [9.3, 9.4, 9.5, chapter 10]

nth partial sum (1st n terms added):
n∑

i=1
ai =

n−1∑
i=0

ai

sequence of partial sums Sn converges⇔ series does
so examine lim

n→∞
Sn

Example:
∞∑

n=1

1
n(n+1) Sn = n

n+1 lim
n→∞

Sn = 1
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9.3: Terms Not Going to 0
terms not going to 0: lim

n→∞
an 6= 0 or DNE, then partial

sums diverge and so does the series. Example:
∞∑

n=1

5+n
2n+1

Dr. Sarah Math 1120: Calculus and Analytic Geometry II



Clicker Question

1. What can we say about the series
∞∑

n=1

(1)n ?

a) it is a geometric series with a constant ratio of each term to
its preceding one x

b) we can find a pattern for the partial sums Sn =
n∑

i=1
ai

c) limn→∞ an 6= 0 so we can apply the terms not going to 0
d) all of the above
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9.3:Linearity for Convergence or Divergence

Linearity:
∞∑

n=1

an converges to S and
∞∑

n=1

bn converges to

T , and k is any constant, then
∞∑

n=1

kan + bn converges to

kS + T .

Application 1: add two geometric series (converge to sum)
Application 2: add divergent & convergent series (diverge)

Example:
∞∑

n=1
(1

2)
n + 1n.

Diverges, because if it were convergent, then subtract

convergent
∞∑

n=1
(1

2)
n and the result should converge by

linearity, but doesn’t!
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Clicker Question

2. What can we say about
∞∑

n=1

1
3n +

1
2n ?

a) It is a geometric series so we can apply 9.2 methods to
determine convergence by checking if |x | < 1 or divergence
otherwise

b) We can use the lim
n→∞

an 6= 0 to determine divergence

c) We can use linearity to determine convergence or
divergence

d) all of the above
e) none of the above

=
∞∑

n=1

1n

3n +
1n

2n =
∞∑

n=1

(
1
3
)n + (

1
2
)n
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Clicker Question
3. Do any of the following apply to

∞∑
n=1

1
n ?

a) It is a geometric series so we can apply 9.2 methods to
determine convergence by checking if |x | < 1 or divergence
otherwise

b) We can use the lim
n→∞

1
n 6= 0 to determine divergence of

∞∑
n=1

1
n

c) We can use linearity to determine convergence
d) all of the above
e) none of the above
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Harmonic series
∞∑

N=1

1
N diverges by growing to∞ slowly! Why?

Integral Test
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9.3: Integral Test Bounds
If series has terms that are decreasing and positive
(eventually), the integral test not only tells us about
convergence, but also bounds the series:

a4a3
a2

a1

a1=f(1)

∫ ∞
1

f (x)dx ≤
∑

an
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Harmonic series
∞∑

N=1

1
N diverges by growing to∞ slowly! Why?

Integral Test

assumptions: terms are decreasing, an > 0, known integral

yes
so test applies∫ ∞

1

1
x

dx = lim
b→∞

∫ b

1

1
x

dx = lim
b→∞

ln(x)
∣∣∣∣b
1
= lim

b→∞
ln(b)− ln(1)

diverges so series does too
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9.3: Integral Test
For

∞∑
1

an, if the terms are decreasing and an > 0 then the

series behaves the same way as
∞∫
1

andn.

So look for decreasing and positive terms (eventually) that
we can integrate (Calc I or Chap 7) + improper integral.
Otherwise the test does NOT help.

p−series
∞∑

n=1

1
np conv if p > 1 and div if p ≤ 1 by int test
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Geo series
n−1∑
i=0

1
2

1
2

i
=

n∑
i=1

1
2

i
converges as n→∞ to

1
2

1− 1
2

=1 hamster

slowly (Zeno’s paradox)
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Clicker Question
4. Which of the following are true regarding

∞∑
n=2

2n
4+n2 ?

a) It is a geometric series so we can apply 9.2 methods to
determine convergence by checking if |x | < 1 or divergence
otherwise

b) lim
n→∞

2n
4+n2 6= 0 determines divergence of

∞∑
n=2

2n
4+n2

c) We can use linearity to determine convergence
d) We can use the integral test to determine convergence
e) none of the above
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Clicker Question

5. Does the series
∞∑

n=1

(−1)n converge?

a) yes and I have a good reason why
b) yes but I am unsure of why
c) no, but I am unsure of why
d) no, and I have a good reason why
e) it is not a series, so no
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History and Applications
Brahmagupta gave rules for summing series in his 628
work Brahmasphutasiddanta (Opening of the Universe)

wheat (or rice) and chess problem. Stories of
63∑

n=0
2n grains

owed by King (18,446,744,073,709,551,615)
Nicole Oresme (14th century) harmonic series diverging.
Name from wavelengths of the overtones of a vibrating
string. Architects.
James Gregory (1668) introduced the terms convergence
and divergence
Integral test was developed by Colin Maclaurin and
Augustin-Louis Cauchy and is sometimes known as the
Maclaurin-Cauchy test (or by either name).
infinite series are widely used in mathematics & other
quantitative disciplines such as physics, computer science,
& finance.
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