9.2 Geometric Series Review

- Geometric Series $a=$ starting term, $x=$ constant ratio of each term to preceding one $\sum_{i=0}^{\infty} a x^{i}=\frac{a}{1-x}$ when $|x|<1$ and diverges otherwise $n^{\text {th }}$ partial sum (1st n terms added): $\sum_{i=0}^{n-1} a x^{i}=\frac{a\left(1-x^{n}\right)}{1-x}$ for $x \neq 1$

Example: $\sum_{i=0}^{n-1} \frac{1}{2} \frac{1}{2}^{i}=\sum_{i=1}^{n} \frac{1}{2}^{i}$ careful of starting \# and index

9.3 Series: Partial Sums More Generally

- $\sum_{n=1}^{\infty} a_{n}$ and convergence? [9.3, 9.4, 9.5, chapter 10]

9.3 Series: Partial Sums More Generally

- $\sum_{n=1}^{\infty} a_{n}$ and convergence? [9.3, 9.4, 9.5, chapter 10]
- $n^{\text {th }}$ partial sum (1 st n terms added): $\sum_{i=1}^{n} a_{i}=\sum_{i=0}^{n-1} a_{i}$ sequence of partial sums S_{n} converges \Leftrightarrow series does so examine $\lim _{n \rightarrow \infty} S_{n}$
- Example: $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$

9.3 Series: Partial Sums More Generally

- $\sum_{n=1}^{\infty} a_{n}$ and convergence? [9.3, 9.4, 9.5, chapter 10]
- $n^{\text {th }}$ partial sum (1 st n terms added): $\sum_{i=1}^{n} a_{i}=\sum_{i=0}^{n-1} a_{i}$ sequence of partial sums S_{n} converges \Leftrightarrow series does so examine $\lim _{n \rightarrow \infty} S_{n}$
- Example: $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \quad S_{n}=\frac{n}{n+1}$

9.3 Series: Partial Sums More Generally

- $\sum_{n=1}^{\infty} a_{n}$ and convergence? [9.3, 9.4, 9.5, chapter 10]
- $n^{\text {th }}$ partial sum (1st n terms added): $\sum_{i=1}^{n} a_{i}=\sum_{i=0}^{n-1} a_{i}$ sequence of partial sums S_{n} converges \Leftrightarrow series does so examine $\lim _{n \rightarrow \infty} S_{n}$
- Example: $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \quad S_{n}=\frac{n}{n+1} \quad \lim _{n \rightarrow \infty} S_{n}=1$

9.3: Terms Not Going to 0

- terms not going to $0: \lim _{n \rightarrow \infty} a_{n} \neq 0$ or DNE, then partial sums diverge and so does the series. Example: $\sum_{n=1}^{\infty} \frac{5+n}{2 n+1}$

Clicker Question

1. What can we say about the series $\sum_{n=1}^{\infty}(1)^{n}$?
a) it is a geometric series with a constant ratio of each term to its preceding one x
b) we can find a pattern for the partial sums $S_{n}=\sum_{i=1}^{n} a_{i}$
c) $\lim _{n \rightarrow \infty} a_{n} \neq 0$ so we can apply the terms not going to 0
d) all of the above

Clicker Question

1. What can we say about the series $\sum_{n=1}^{\infty}(1)^{n}$?
a) it is a geometric series with a constant ratio of each term to its preceding one x
b) we can find a pattern for the partial sums $S_{n}=\sum_{i=1}^{n} a_{i}$
c) $\lim _{n \rightarrow \infty} a_{n} \neq 0$ so we can apply the terms not going to 0
d) all of the above

9.3:Linearity for Convergence or Divergence

- Linearity: $\sum_{n=1}^{\infty} a_{n}$ converges to S and $\sum_{n=1}^{\infty} b_{n}$ converges to
T, and k is any constant, then $\sum_{n=1}^{\infty} k a_{n}+b_{n}$ converges to $k S+T$.

9.3:Linearity for Convergence or Divergence

- Linearity: $\sum_{n=1}^{\infty} a_{n}$ converges to S and $\sum_{n=1}^{\infty} b_{n}$ converges to
T, and k is any constant, then $\sum_{n=1}^{\infty} k a_{n}+b_{n}$ converges to $k S+T$.
Application 1: add two geometric series (converge to sum)

9.3:Linearity for Convergence or Divergence

- Linearity: $\sum_{n=1}^{\infty} a_{n}$ converges to S and $\sum_{n=1}^{\infty} b_{n}$ converges to
T, and k is any constant, then $\sum_{n=1}^{\infty} k a_{n}+b_{n}$ converges to $k S+T$.
Application 1: add two geometric series (converge to sum) Application 2: add divergent \& convergent series (diverge)
Example: $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}+1^{n}$.
Diverges, because if it were convergent, then subtract convergent $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$ and the result should converge by linearity, but doesn't!

Clicker Question

2. What can we say about $\sum_{n=1}^{\infty} \frac{1}{3^{n}}+\frac{1}{2^{n}}$?
a) It is a geometric series so we can apply 9.2 methods to determine convergence by checking if $|x|<1$ or divergence otherwise
b) We can use the $\lim _{n \rightarrow \infty} a_{n} \neq 0$ to determine divergence
c) We can use linearity to determine convergence or divergence
d) all of the above
e) none of the above

Clicker Question

2. What can we say about $\sum_{n=1}^{\infty} \frac{1}{3^{n}}+\frac{1}{2^{n}}$?
a) It is a geometric series so we can apply 9.2 methods to determine convergence by checking if $|x|<1$ or divergence otherwise
b) We can use the $\lim _{n \rightarrow \infty} a_{n} \neq 0$ to determine divergence
c) We can use linearity to determine convergence or divergence
d) all of the above
e) none of the above

$$
=\sum_{n=1}^{\infty} \frac{1^{n}}{3^{n}}+\frac{1^{n}}{2^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n}+\left(\frac{1}{2}\right)^{n}
$$

Clicker Question

3. Do any of the following apply to $\sum_{n=1}^{\infty} \frac{1}{n}$?
a) It is a geometric series so we can apply 9.2 methods to determine convergence by checking if $|x|<1$ or divergence otherwise
b) We can use the $\lim _{n \rightarrow \infty} \frac{1}{n} \neq 0$ to determine divergence of $\sum_{n=1}^{\infty} \frac{1}{n}$
c) We can use linearity to determine convergence
d) all of the above
e) none of the above

Clicker Question

3. Do any of the following apply to $\sum_{n=1}^{\infty} \frac{1}{n}$?
a) It is a geometric series so we can apply 9.2 methods to determine convergence by checking if $|x|<1$ or divergence otherwise
b) We can use the $\lim _{n \rightarrow \infty} \frac{1}{n} \neq 0$ to determine divergence of $\sum_{n=1}^{\infty} \frac{1}{n}$
c) We can use linearity to determine convergence
d) all of the above
e) none of the above

THE MATH GENIE

THE MATH GENIE

Harmonic series $\sum_{N=1}^{\infty} \frac{1}{N}$ diverges by growing to ∞ slowly! Why?

9.3: Integral Test Bounds

If series has terms that are decreasing and positive (eventually), the integral test not only tells us about convergence, but also bounds the series:

9.3: Integral Test Bounds

If series has terms that are decreasing and positive (eventually), the integral test not only tells us about convergence, but also bounds the series:

9.3: Integral Test Bounds

If series has terms that are decreasing and positive, the integral test not only tells us about convergence, but also bounds the series:

9.3: Integral Test Bounds

If series has terms that are decreasing and positive, the integral test not only tells us about convergence, but also bounds the series:

THE MATH GENIE

Harmonic series $\sum_{N=1}^{\infty} \frac{1}{N}$ diverges by growing to ∞ slowly! Why? Integral Test
assumptions: terms are decreasing, $a_{n}>0$, known integral

THE MATH GENIE

Harmonic series $\sum_{N=1}^{\infty} \frac{1}{N}$ diverges by growing to ∞ slowly! Why? Integral Test
assumptions: terms are decreasing, $a_{n}>0$, known integral yes so test applies

THE MATH GENIE

Harmonic series $\sum_{N=1}^{\infty} \frac{1}{N}$ diverges by growing to ∞ slowly! Why? Integral Test
assumptions: terms are decreasing, $a_{n}>0$, known integral yes so test applies
$\int_{1}^{\infty} \frac{1}{x} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x} d x=$

THE MATH GENIE

Harmonic series $\sum_{N=1}^{\infty} \frac{1}{N}$ diverges by growing to ∞ slowly! Why? Integral Test
assumptions: terms are decreasing, $a_{n}>0$, known integral yes so test applies
$\int_{1}^{\infty} \frac{1}{x} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x} d x=\left.\lim _{b \rightarrow \infty} \ln (x)\right|_{1} ^{b}=$

THE MATH GENIE

Harmonic series $\sum_{N=1}^{\infty} \frac{1}{N}$ diverges by growing to ∞ slowly! Why? Integral Test
assumptions: terms are decreasing, $a_{n}>0$, known integral yes so test applies
$\int_{1}^{\infty} \frac{1}{x} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x} d x=\left.\lim _{b \rightarrow \infty} \ln (x)\right|_{1} ^{b}=\lim _{b \rightarrow \infty} \ln (b)-\ln (1)$ diverges so series does too

9.3: Integral Test

- For $\sum_{1}^{\infty} a_{n}$, if the terms are decreasing and $a_{n}>0$ then the series behaves the same way as $\int_{1}^{\infty} a_{n} d n$.
So look for decreasing and positive terms (eventually) that we can integrate (Calc I or Chap 7) + improper integral. Otherwise the test does NOT help.

9.3: Integral Test

- For $\sum_{1}^{\infty} a_{n}$, if the terms are decreasing and $a_{n}>0$ then the series behaves the same way as $\int_{1}^{\infty} a_{n} d n$.
So look for decreasing and positive terms (eventually) that we can integrate (Calc I or Chap 7) + improper integral. Otherwise the test does NOT help.
- p-series $\sum_{n=1}^{\infty} \frac{1}{n^{D}}$ conv if $p>1$ and div if $p \leq 1$ by int test

Dr. Sarah

Geo series $\sum_{i=0}^{n-1} \frac{1}{2} \frac{1}{2}^{i}=\sum_{i=1}^{n} \frac{1}{2}^{i}$ converges as $n \rightarrow \infty$ to $\frac{\frac{1}{2}}{1-\frac{1}{2}}=1$ hamster slowly (Zeno's paradox)

Clicker Question

4. Which of the following are true regarding $\sum_{n=2}^{\infty} \frac{2 n}{4+n^{2}}$?
a) It is a geometric series so we can apply 9.2 methods to determine convergence by checking if $|x|<1$ or divergence otherwise
b) $\lim _{n \rightarrow \infty} \frac{2 n}{4+n^{2}} \neq 0$ determines divergence of $\sum_{n=2}^{\infty} \frac{2 n}{4+n^{2}}$
c) We can use linearity to determine convergence
d) We can use the integral test to determine convergence
e) none of the above

Clicker Question

4. Which of the following are true regarding $\sum_{n=2}^{\infty} \frac{2 n}{4+n^{2}}$?
a) It is a geometric series so we can apply 9.2 methods to determine convergence by checking if $|x|<1$ or divergence otherwise
b) $\lim _{n \rightarrow \infty} \frac{2 n}{4+n^{2}} \neq 0$ determines divergence of $\sum_{n=2}^{\infty} \frac{2 n}{4+n^{2}}$
c) We can use linearity to determine convergence
d) We can use the integral test to determine convergence
e) none of the above

Clicker Question

5. Does the series $\sum_{n=1}^{\infty}(-1)^{n}$ converge?
a) yes and I have a good reason why
b) yes but I am unsure of why
c) no, but I am unsure of why
d) no, and I have a good reason why
e) it is not a series, so no

Clicker Question

5. Does the series $\sum_{n=1}^{\infty}(-1)^{n}$ converge?
a) yes and I have a good reason why
b) yes but I am unsure of why
c) no, but I am unsure of why
d) no, and I have a good reason why
e) it is not a series, so no

History and Applications

- Brahmagupta gave rules for summing series in his 628 work Brahmasphutasiddanta (Opening of the Universe)
- wheat (or rice) and chess problem. Stories of $\sum_{n=0}^{63} 2^{n}$ grains owed by King (18,446,744,073,709,551,615)
- Nicole Oresme (14th century) harmonic series diverging. Name from wavelengths of the overtones of a vibrating string. Architects.
- James Gregory (1668) introduced the terms convergence and divergence
- Integral test was developed by Colin Maclaurin and Augustin-Louis Cauchy and is sometimes known as the Maclaurin-Cauchy test (or by either name).
- infinite series are widely used in mathematics \& other quantitative disciplines such as physics, computer science, \& finance.

