7.4 Partial Fractions (Quotients of Polynomials)

- Useful when denominator of quotient of polynomials and divides up into real factors that are linear or irreducible quadratic (or repeated)
- Based on adding fractions via a common denominator to make it easier to integrate

$$
\begin{array}{cc}
\text { Factor } & \text { Term in Partial Fraction Decomposition } \\
(a x+b) & \frac{A}{a x+b} \\
(a x+b)^{2} & \frac{A}{a x+b}+\frac{A x+b}{(a x+b)^{2}} \\
\left(a x^{2}+b x+c\right) & \frac{A B}{a x^{2}+b x+c}
\end{array}
$$

7.4 Trig Substition

Use if you see any algebraic expression that looks like the Pythagorean theorem (i.e., $\sqrt{a^{2}-x^{2}}$ or $\sqrt{x^{2}+a^{2}}$) but regular w-sub fails.

- Identify what trig sub to use $(x=a \sin \theta, x=a \tan \theta)$.
- Write x and $d x$.
- Sketch the triangle with the sides filled in.
- Convert the integral to one with only θ.
- Simplify the radical using algebra and/or the pic...

$\sqrt{1-x^{2}}$

