- *x* is back: $\sum_{n=0}^{\infty} c_n (x-a)^n$ *a* is fixed constant, *x* variable
- x = a always converges (center)! other x's?

- x is back: $\sum_{n=0}^{\infty} c_n (x-a)^n$ a is fixed constant, x variable
- x = a always converges (center)! other x's?
- Ex1: $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$

- *x* is back: $\sum_{n=0}^{\infty} c_n (x-a)^n$ *a* is fixed constant, *x* variable
- x = a always converges (center)! other x's?
- Ex1: $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ Ex2: $1 + x + x^2 + x^3 + x^4 + ...$ Ex3: $(x-0)^1 + (x-1)^2 + (x-2)^3 + ... + (x-n)^{n+1} + ...$

- x is back: $\sum_{n=0}^{\infty} c_n (x-a)^n$ a is fixed constant, x variable
- x = a always converges (center)! other x's?
- Ex1: $\sum_{n=1}^{\infty} \frac{(x-3)^n}{n}$ Ex2: $1 + x + x^2 + x^3 + x^4 + \dots$ Ex3: $(x-0)^1 + (x-1)^2 + (x-2)^3 + \dots + (x-n)^{n+1} + \dots$
- Still series so apply 9.2, 9.3 & 9.4
- Ratio test or geometric series test is often helpful
- Convergence may depend on constraining x: r radius of convergence, interval of convergence (a - r, a + r) might include 1 or both endpoints so check with 9.2–9.4 methods

lmage: https://www.92y.org/92StreetY/media/MICROSITES/MayCenter/PSlogo-04.jpg

1. Can we use the geometric series test to check the radius of convergence of $\sum_{n=0}^{\infty} (5x)^n = 1 + 5x + 25x^2 + 125x^3 + \dots$?

a) yes

b) no we must use the ratio test instead

Infinitely many people walk into a bar one at a time. The first person orders $\frac{1}{2}$ beer, the second orders $\frac{1}{4}$, the *n*th orders $\frac{1}{2^n}$. The mathematician bartender...

★ E ► ★ E ►

1. Can we use the geometric series test to check the radius of convergence of $\sum_{n=0}^{\infty} (5x)^n = 1 + 5x + 25x^2 + 125x^3 + \dots$?

a) yes

b) no we must use the ratio test instead

Infinitely many people walk into a bar one at a time. The first person orders $\frac{1}{2}$ beer, the second orders $\frac{1}{4}$, the *n*th orders $\frac{1}{2^n}$. The mathematician bartender...

pours $\frac{\overline{2}}{1-\frac{1}{2}} = 1$ beer and tells them to share.

直 アイヨアイヨア

2. Find the radius of convergence for $\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \dots$

- a) the power series converges for no x (i.e. always diverges)
- b) the power series converges for only x = 0, so r = 0
- c) the power series converges for all *x* so $r = \infty$
- d) *r* = 1
- e) other

Do not underestimate the power of the power series.

2. Find the radius of convergence for $\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \dots$

- a) the power series converges for no x (i.e. always diverges)
- b) the power series converges for only x = 0, so r = 0
- c) the power series converges for all *x* so $r = \infty$
- d) *r* = 1
- e) other

3. The ratio test can be used to show that r = 1 for $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$,

which has a center of 0. Determine the interval of convergence by checking the endpoints (x = -1 and x = 1).

- a) the power series converges for -1 < x < 1, i.e. (-1, 1)
- b) the power series converges for $-1 \le x \le 1$, i.e. [-1, 1]
- c) the power series converges for $-1 \le x < 1$, i.e. [-1, 1)
- d) the power series converges for $-1 < x \le 1$, i.e. (-1, 1]
- e) none of the above

- 4. Suppose the power series $\sum_{n=0}^{\infty} c_n x^n$ converges if x = -3 and diverges if x = 7. Which of the following are true?
 - a) The power series converges if x = 0
 - b) The power series converges if x = 3
 - c) The power series diverges if x = 3
 - d) a) and b)
 - e) a) and c)

Don't just read it; fight it!

--- Paul R. Halmos

Image: https://abstrusegoose.com/353

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

History and Applications

- James Gregory (1671) For $-1 \le x \le 1$, $\arctan(x) = \sum_{n=1}^{\infty} (-1)^{(n-1)} \frac{x^{2n-1}}{2n-1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$
- analysis, number theory and combinatorics
- electrical engineering (Z-transform)
- Planetary motion and the shape of a vibrating drumhead: Bessel functions, named for Wilhelm Bessel (1817). The Bessel function of order 0 is defined by

$$\sum_{n=0}^{\infty} \frac{-1^n x^{2n}}{2^{2n} (n!)^2}$$

Image: http://powerseries.co.za/web/wp-content/uploads/2013/07/Power-Series-Banner-Logo-9501.png =