9.5: Power Series: Sums of Powers of x or $(x-a)$

- x is back: $\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \quad a$ is fixed constant, x variable
- $x=a$ always converges (center)! other $x^{\prime} s$?
9.5: Power Series: Sums of Powers of x or $(x-a)$
- x is back: $\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \quad a$ is fixed constant, x variable
- $x=a$ always converges (center)! other $x^{\prime} s$?
- Ex1: $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n}$
9.5: Power Series: Sums of Powers of x or $(x-a)$
- x is back: $\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \quad a$ is fixed constant, x variable
- $x=a$ always converges (center)! other $x^{\prime} s$?
- Ex1: $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n}$

Ex2: $1+x+x^{2}+x^{3}+x^{4}+\ldots$
Ex3: $(x-0)^{1}+(x-1)^{2}+(x-2)^{3}+\ldots+(x-n)^{n+1}+\ldots$

9.5: Power Series: Sums of Powers of x or $(x-a)$

- x is back: $\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \quad a$ is fixed constant, x variable
- $x=a$ always converges (center)! other $x^{\prime} s$?
- Ex1: $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n}$

Ex2: $1+x+x^{2}+x^{3}+x^{4}+\ldots$
Ex3: $(x-0)^{1}+(x-1)^{2}+(x-2)^{3}+\ldots+(x-n)^{n+1}+\ldots$

- Still series so apply $9.2,9.3$ \& 9.4
- Ratio test or geometric series test is often helpful
- Convergence may depend on constraining $x: r$ radius of convergence, interval of convergence ($a-r, a+r$) might include 1 or both endpoints so check with 9.2-9.4 methods

Clicker Question

1. Can we use the geometric series test to check the radius of
convergence of $\sum_{n=0}^{\infty}(5 x)^{n}=1+5 x+25 x^{2}+125 x^{3}+\ldots ?$
a) yes
b) no we must use the ratio test instead

Infinitely many people walk into a bar one at a time. The first person orders $\frac{1}{2}$ beer, the second orders $\frac{1}{4}$, the $n^{\text {th }}$ orders $\frac{1}{2^{n}}$. The mathematician bartender...

Clicker Question

1. Can we use the geometric series test to check the radius of
convergence of $\sum_{n=0}^{\infty}(5 x)^{n}=1+5 x+25 x^{2}+125 x^{3}+\ldots ?$
a) yes
b) no we must use the ratio test instead

Infinitely many people walk into a bar one at a time. The first person orders $\frac{1}{2}$ beer, the second orders $\frac{1}{4}$, the $n^{\text {th }}$ orders $\frac{1}{2^{n}}$. The mathematician bartender...
pours $\frac{\frac{1}{2}}{1-\frac{1}{2}}=1$ beer and tells them to share.

Clicker Question

2. Find the radius of convergence for $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\ldots$
a) the power series converges for no x (i.e. always diverges)
b) the power series converges for only $x=0$, so $r=0$
c) the power series converges for all x so $r=\infty$
d) $r=1$
e) other

Do not underestimate the power of the power series.

Clicker Question

2. Find the radius of convergence for $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\ldots$
a) the power series converges for no x (i.e. always diverges)
b) the power series converges for only $x=0$, so $r=0$
c) the power series converges for all x so $r=\infty$
d) $r=1$
e) other

Do not underestimate the powe
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\ldots$

Clicker Question

3. The ratio test can be used to show that $r=1$ for $\sum_{n=1}^{\infty} \frac{x^{n}}{\sqrt{n}}$, which has a center of 0 . Determine the interval of convergence by checking the endpoints ($x=-1$ and $x=1$).
a) the power series converges for $-1<x<1$, i.e. $(-1,1)$
b) the power series converges for $-1 \leq x \leq 1$, i.e. $[-1,1]$
c) the power series converges for $-1 \leq x<1$, i.e. $[-1,1)$
d) the power series converges for $-1<x \leq 1$, i.e. $(-1,1]$
e) none of the above

Clicker Question

4. Suppose the power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges if $x=-3$ and diverges if $x=7$. Which of the following are true?
a) The power series converges if $x=0$
b) The power series converges if $x=3$
c) The power series diverges if $x=3$
d) a) and b)
e) a) and c)

Don't just read it; fight it!
--- Paul R. Halmos

History and Applications

- James Gregory (1671)

$$
\text { For }-1 \leq x \leq 1 \text {, }
$$

$$
\arctan (x)=\sum_{n=1}^{\infty}(-1)^{(n-1)} \frac{x^{2 n-1}}{2 n-1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots
$$

- analysis, number theory and combinatorics
- electrical engineering (Z-transform)
- Planetary motion and the shape of a vibrating drumhead: Bessel functions, named for Wilhelm Bessel (1817). The Bessel function of order 0 is defined by

$$
\sum_{n=0}^{\infty} \frac{-1^{n} x^{2 n}}{2^{2 n}(n!)^{2}}
$$

