Test 1 Material

- Algebra (and lots of it!)
- Right angle trigonometry
- Limits
- Calc I derivatives and integrals, including FTC & splitting numerator
- 7.1 Substitution (Undoing the Chain Rule)
- 7.2 Parts (Undoing the Product Rule)
- 7.4 Partial Fractions (Quotients of Polynomials)
- 7.4 Trig Substitution (Apply Right Triangle Trig)
- 7.5 Numerical Integration (Approximations)
- 7.6 Improper Integrals (Infinity and Beyond)
- List the technique you would use to compute the antiderivative and set up the resulting transformed integral. You do NOT need to evaluate integrals in this section.
 - Evaluate the following integrals and show all work.

7.1 Substitution (Undoing the Chain Rule)

- Try to find w so that dw is in \int
- Often helpful to choose w "inside" of some other function

What I want you to show me... w, dw, \int with respect to w

7.2 Parts (Undoing the Product Rule)

- Choose so u · v' is the function you are integrating
- If possible, choose u & v' so $\int u' v dx$ easier to integrate
- Might help to choose v' as the largest portion you can find an antiderivative for. Herbert Kasube: detail

What I want you to show me... $u, u', v, v', uv - \int u' v dx$

7.4 Partial Fractions (Quotients of Polynomials)

- Useful for us when the denominator divides up into real factors that are linear or irreducible quadratic (or repeated)
- Based on adding fractions by getting a common denominator

What I want you to show me... the expansion, and the system of equations to solve for A, B, C...

Example 1: Write
$$\frac{4x+1}{x^2-x-2}$$
 using partial fractions.

$$\frac{4x+1}{x^2-x-2} = \frac{4x+1}{(x+1)(x-2)} = \frac{A}{x+1} + \frac{B}{x-2} = \frac{A(x-2) + B(x+1)}{(x+1)(x-2)}$$

$$4x+1 = A(x-2) + B(x+1)$$

$$x = 2 \implies 4 \cdot 2 + 1 = A(0) + B(3) \implies B = 3$$

$$x = -1 \implies 4(-1) + 1 = A(-3) + B(0) \implies A = 1$$
Thus $\frac{4x+1}{x^2-x-2} = \frac{1}{x+1} + \frac{3}{x-2}$.

7.4 Trig Substitution (Apply Right Triangle Trig)

If an algebraic expression looks like the Pythagorean theorem

(; •	<u>-2 v2</u> or	1.2	<u> </u>	بأبيل مستحسام متحط		0
(i.e., $\sqrt{a^2 - x^2}$ or $\sqrt{x^2 + a^2}$), then draw a triangle						
Use this	if you see this	pic	reduced	via algebra	via pic	7
trig	& w-sub fails		radical			
$x = a \sin \theta$	$\sqrt{a^2 - x^2}$		a cos θ	$\sqrt{a^2-a^2\sin^2\theta}$	$\cos\theta = \frac{\sqrt{a^2 - x^2}}{a}$	
$dx = a\cos\theta d\theta$				$=\sqrt{a^2(1-\sin^2\theta)}$	mult by a	
				$=\sqrt{a^2(\cos^2\theta)}$		
				$=\sqrt{(a\cos\theta)^2}$		
				$=a\cos\theta$		
$x = a \tan \theta$	$\sqrt{a^2+x^2}$		$a \sec \theta$	$\sqrt{a^2+a^2\tan^2\theta}$	$\sec \theta = \frac{1}{\cos \theta}$	7
$dx = a \sec^2 \theta d\theta$				$=\sqrt{a^2(1+\tan^2\theta)}$	$\sec \theta = \frac{\sqrt{a^2 + x^2}}{a}$	
				$=\sqrt{a^2(\sec^2\theta)}$	mult by a	
				$=\sqrt{(a \sec \theta)^2}$		
				=a sec θ		

What I want you to show me... The trig sub for x, dx, triangle with sides filled in, the integral with respect to θ reduced, and (if solving) the conversions you used to get back to x.

1 x (4+x²) x

7.6 Improper Integrals (Infinity and Beyond)

- If you see any integral with ∞ in it, or infinite discontinuities
- Express the integral as a proper one via limit (or limits) to any problem(s), like $\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$
- Integrate and evaluate the limit
- The integral converges to a finite number if the limit(s) exist, and diverges otherwise

What I want you to show me... The above steps.

$$\int_{-2}^{0} \frac{1}{x^{2}} dx = \lim_{t \to 0^{+}} \int_{-2}^{t} \frac{1}{x^{3}} dx$$
$$= \lim_{t \to 0^{+}} \left(-\frac{1}{2x^{2}} \right)_{-2}^{t}$$
$$= \lim_{t \to 0^{+}} \left(-\frac{1}{2t^{2}} + \frac{1}{8} \right)$$
$$= -\infty$$

Dr. Sarah Math 1120: Calculus and Analytic Geometry II

7.5 Numerical Methods

- Approximates integrals we can't evaluate directly, including discrete data
- *n*= number of intervals, $\triangle x = \frac{b-a}{n}$, $x_{i+1} = x_i + \triangle x$
- $Left(4) = f(x_0) \triangle x + f(x_1) \triangle x + f(x_2) \triangle x + f(x_3) \triangle x$ left endpoints
- $Right(4) = f(x_1) \triangle x + f(x_2) \triangle x + f(x_3) \triangle x + f(x_4) \triangle x$ right points

Dr. Sarah Math 1120: Calculus and Analytic Geometry II

Test 1 Material

- Algebra (and lots of it!)
- Right angle trigonometry
- Limits
- Calc I derivatives and integrals, including FTC & splitting numerator
- 7.1 Substitution (Undoing the Chain Rule)
- 7.2 Parts (Undoing the Product Rule)
- 7.4 Partial Fractions (Quotients of Polynomials)
- 7.4 Trig Substitution (Apply Right Triangle Trig)
- 7.5 Numerical Integration (Approximations)
- 7.6 Improper Integrals (Infinity and Beyond)
- List the technique you would use to compute the antiderivative and set up the resulting transformed integral. You do NOT need to evaluate integrals in this section.
- Evaluate the following integrals and show all work.