Test 1 Material

- Algebra (and lots of it!)
- Right angle trigonometry
- Limits
- Calc I derivatives and integrals, including FTC \& splitting numerator
- 7.1 Substitution (Undoing the Chain Rule)
- 7.2 Parts (Undoing the Product Rule)
- 7.4 Partial Fractions (Quotients of Polynomials)
- 7.4 Trig Substitution (Apply Right Triangle Trig)
- 7.5 Numerical Integration (Approximations)
- 7.6 Improper Integrals (Infinity and Beyond)
(1) List the technique you would use to compute the antiderivative and set up the resulting transformed integral. You do NOT need to evaluate integrals in this section.
(2) Evaluate the following integrals and show all work.

7.1 Substitution (Undoing the Chain Rule)

- Try to find w so that $d w$ is in \int
- Often helpful to choose w "inside" of some other function What I want you to show me... $w, d w, \int$ with respect to w

$$
\begin{array}{ll}
\int \cos ^{3} x \sin x d x & \omega=\cos x \\
\int(\cos x)^{3} \sin x d x & \partial \omega=-\sin x \partial x \\
-\int \omega^{3} \partial \omega & -d \omega=\sin x d x \\
-\frac{1}{4} \omega^{4}+C & \\
-\frac{1}{4} \cos ^{4} x+C &
\end{array}
$$

Don't practice until you get it right.

Practice until you can't get it wrong.

7.2 Parts (Undoing the Product Rule)

- Choose so $u \cdot v^{\prime}$ is the function you are integrating
- If possible, choose $u \& v^{\prime}$ so $\int u^{\prime} v d x$ easier to integrate
- Might help to choose v^{\prime} as the largest portion you can find an antiderivative for. Herbert Kasube: detail
What I want you to show me... $u, u^{\prime}, v, v^{\prime}, u v-\int u^{\prime} v d x$

7.4 Partial Fractions (Quotients of Polynomials)

- Useful for us when the denominator divides up into real factors that are linear or irreducible quadratic (or repeated)
- Based on adding fractions by getting a common denominator
What I want you to show me... the expansion, and the system of equations to solve for A, B, C...

Example 1: Write $\frac{4 x+1}{x^{2}-x-2}$ using partial fractions.

$$
\begin{gathered}
\frac{4 x+1}{x^{2}-x-2}=\frac{4 x+1}{(x+1)(x-2)}=\frac{A}{x+1}+\frac{B}{x-2}=\frac{A(x-2)+B(x+1)}{(x+1)(x-2)} \\
4 x+1=A(x-2)+B(x+1) \\
x=2 \Rightarrow 4 \cdot 2+1=A(0)+B(3) \Rightarrow B=3 \\
x=-1 \Rightarrow 4(-1)+1=A(-3)+B(0) \Rightarrow A=1 \\
\text { Thus } \frac{4 x+1}{x^{2}-x-2}=\frac{1}{x+1}+\frac{3}{x-2} .
\end{gathered}
$$

7.4 Trig Substitution (Apply Right Triangle Trig)

- If an algebraic expression looks like the Pythagorean theorem

What I want you to show me... The trig sub for $x, d x$, triangle with sides filled in, the integral with respect to θ reduced, and (if solving) the conversions you used to get back to x.

7.6 Improper Integrals (Infinity and Beyond)

- If you see any integral with ∞ in it, or infinite discontinuities
- Express the integral as a proper one via limit (or limits) to any problem(s), like $\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x$
- Integrate and evaluate the limit
- The integral converges to a finite number if the limit(s) exist, and diverges otherwise

What I want you to show me... The above steps.

$$
\begin{aligned}
\int_{-2}^{0} \frac{1}{x^{3}} d x & =\lim _{t \rightarrow \sigma} \int_{-2}^{t} \frac{1}{x^{3}} d x \\
& =\left.\lim _{t \rightarrow \sigma}\left(-\frac{1}{2 x^{2}}\right)\right|_{-2} ^{t} \\
& =\lim _{t \rightarrow \sigma}\left(-\frac{1}{2 t^{2}}+\frac{1}{8}\right) \\
& =-\infty
\end{aligned}
$$

7.5 Numerical Methods

- Approximates integrals we can't evaluate directly, including discrete data
- $n=$ number of intervals, $\Delta x=\frac{b-a}{n}, x_{i+1}=x_{i}+\Delta x$
- Left(4) $=f\left(x_{0}\right) \triangle x+f\left(x_{1}\right) \triangle x+f\left(x_{2}\right) \triangle x+f\left(x_{3}\right) \triangle x$ left endpoints
- Right $(4)_{f(x)}=f\left(x_{1}\right) \triangle x+f\left(x_{2}\right) \triangle x+f\left(x_{3}\right) \triangle x+f\left(x_{4}\right) \triangle x$ right points
left:

right:

- $\operatorname{Trap}(4)=\frac{\operatorname{Left}(4)+\operatorname{Right}(4)}{2}$ connect left and right points
- $\operatorname{Mid}(4)=$
$f\left(\frac{x_{0}+x_{1}}{2}\right) \triangle x+f\left(\frac{x_{1}+x_{2}}{2}\right) \triangle x+f\left(\frac{x_{2}+x_{3}}{2}\right) \triangle x+f\left(\frac{x_{3}+x_{4}}{2}\right) \triangle x$ midpoints
trapezoid:

midpoint:

Test 1 Material

- Algebra (and lots of it!)
- Right angle trigonometry
- Limits
- Calc I derivatives and integrals, including FTC \& splitting numerator
- 7.1 Substitution (Undoing the Chain Rule)
- 7.2 Parts (Undoing the Product Rule)
- 7.4 Partial Fractions (Quotients of Polynomials)
- 7.4 Trig Substitution (Apply Right Triangle Trig)
- 7.5 Numerical Integration (Approximations)
- 7.6 Improper Integrals (Infinity and Beyond)
(1) List the technique you would use to compute the antiderivative and set up the resulting transformed integral. You do NOT need to evaluate integrals in this section.
(2) Evaluate the following integrals and show all work.

