Test
converges if diverges if

Terms $\nrightarrow 0$
$\sum a_{n}, a_{n} \nrightarrow 0$ try this test first inconclusive

Finite series

Geometric
$\sum_{0}^{\infty} a x^{n}$
a starting value
x constant ratio

Integral
pos, dec a_{n} known \int
$\int^{\infty} a_{n} d n$
converges
$|x|<1$ to $\frac{a}{1-x} \quad|x| \geq 1$ always
ex: p-series $\sum \frac{1}{n^{\rho}} \quad \int$ bounds \sum
Linearity
$\sum a_{n}+b_{n}$
both conv
only 1 div

9.4: (Direct) Comparison Test

- For positive terms $a_{n} \leq b_{n}$
- If a series $\sum b_{n}$ converges, then so does any smaller (term by term) series
- If a series $\sum a_{n}$ diverges, then so does any larger (term by term) series
- Example: $\sum \frac{1}{\ln (n!)}$

9.4: (Direct) Comparison Test

- For positive terms $a_{n} \leq b_{n}$
- If a series $\sum b_{n}$ converges, then so does any smaller (term by term) series
- If a series $\sum a_{n}$ diverges, then so does any larger (term by term) series
- Example: $\sum \frac{1}{\ln (n!)} \quad \frac{1}{\ln (n!)}>\frac{1}{\ln \left(n^{n}\right)}=\frac{1}{\ln (n)}$

Clicker Question

1. Can we use (direct) comparison on $\sum_{n=1}^{\infty} \frac{3}{n^{5}+n+8}$ by comparing it with $\sum_{n=1}^{\infty} \frac{3}{n^{5}}$? If so, does the sequence converge or diverge?
a) yes and they both converge
b) yes and they both diverge
c) no we can't use direct comparison on it but I don't know what else to use
d) no we can't use direct comparison on it but another method tells me it diverges
e) no we can't use direct comparison on it but another method tells me it converges

Clicker Question

2. Match the following series with the series we can use for the (direct) comparison test
Series 1: $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{n\left(n^{2}+1\right)}$
Series 2: $\sum_{n=1}^{\infty} \frac{\arctan (n)}{n^{2}}$
Comp 1: $\sum_{n=1}^{\infty} \frac{\frac{\pi}{2}}{n^{2}}$
Comp 2: $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$
a) Series 1 and Comparison 1, Series 2 and Comparison 2
b) Series 1 and Comparison 2, Series 2 and Comparison 1
c) We can use direct comparison on Series 1 with one of the comparison series but not Series 2
d) We can use direct comparison on Series 2 with one of the comparison series but not Series 1
e) We can't use direct comparison on either of these

9.4: Limit Comparison Test

- Can be difficult to identify $a_{n} \leq b_{n}$ for the direct comparison test. Sometimes easier to use limits!
- If $a_{n}>0, b_{n}>0$, and $0<\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}<\infty$, then $\sum a_{n}$ behaves the same way as $\sum b_{n}$.
- Quotients of polynomials $\sum \frac{p(n)}{q(n)}$: try ratio of leading terms
- Example: $\sum \frac{n^{2}-4}{4 n^{3}+3 n-8}$

9.4: Limit Comparison Test

- Can be difficult to identify $a_{n} \leq b_{n}$ for the direct comparison test. Sometimes easier to use limits!
- If $a_{n}>0, b_{n}>0$, and $0<\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}<\infty$, then $\sum a_{n}$ behaves the same way as $\sum b_{n}$.

$$
\begin{aligned}
& \text { WHEFE } \\
& \hline \text { SIMFI? }
\end{aligned}
$$

- Quotients of polynomials $\sum \frac{p(n)}{q(n)}$: try ratio of leading terms
- Example: $\sum \frac{n^{2}-4}{4 n^{3}+3 n-8}$

Compare to $\sum \frac{n^{2}}{4 n^{3}}=\sum \frac{1}{4 n}$, which diverges by integral test.
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=$

9.4: Limit Comparison Test

- Can be difficult to identify $a_{n} \leq b_{n}$ for the direct comparison test. Sometimes easier to use limits!
- If $a_{n}>0, b_{n}>0$, and $0<\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}<\infty$, then $\sum a_{n}$ behaves the same way as $\sum b_{n}$.

$$
\begin{aligned}
& \text { WHEFE } \\
& \hline \text { SIMFI? }
\end{aligned}
$$

- Quotients of polynomials $\sum \frac{p(n)}{q(n)}$: try ratio of leading terms
- Example: $\sum \frac{n^{2}-4}{4 n^{3}+3 n-8}$

Compare to $\sum \frac{n^{2}}{4 n^{3}}=\sum \frac{1}{4 n}$, which diverges by integral test.
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\ldots=\lim _{n \rightarrow \infty} \frac{1-\frac{4}{n^{2}}}{1+\frac{3}{4 n^{2}}-\frac{8}{4 n^{3}}}=$

9.4: Limit Comparison Test

- Can be difficult to identify $a_{n} \leq b_{n}$ for the direct comparison test. Sometimes easier to use limits!
- If $a_{n}>0, b_{n}>0$, and $0<\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}<\infty$, then $\sum a_{n}$ behaves the same way as $\sum b_{n}$.

$$
\begin{aligned}
& \text { YHERE } \\
& \text { ISMHF? }
\end{aligned}
$$

- Quotients of polynomials $\sum \frac{p(n)}{q(n)}$: try ratio of leading terms
- Example: $\sum \frac{n^{2}-4}{4 n^{3}+3 n-8}$

Compare to $\sum \frac{n^{2}}{4 n^{3}}=\sum \frac{1}{4 n}$, which diverges by integral test.
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\ldots=\lim _{n \rightarrow \infty} \frac{1-\frac{4}{n^{2}}}{1+\frac{8}{4 n^{2}} \frac{8}{4 n^{3}}}=1 \quad 0<\lim _{n \rightarrow \infty} \frac{\frac{a n}{b_{n}}}{\frac{1}{2}}<\infty$

Clicker Question

3. Use the limit comparison test on $\sum_{n=1}^{\infty} \frac{4 n^{2}+n+9}{7 n^{3}+13}$. Does it converge?
a) yes and I have a good reason why
b) yes but I am unsure of why
c) no, but I am unsure of why
d) no, and I have a good reason why
e) I was unable to use the limit comparison test

- For $\sum a_{n}$, if $\left.\lim _{n \rightarrow \infty} \frac{\text { 9.4: Ratio Test }}{\left|a_{n+1}\right|} \right\rvert\,=L$
$L<1$ implies convergence
$L>1$ implies divergence
$L=1$ gives no information.
- Often useful when we have factorials (n !) or exponents in the series because the algebra will let us cancel
- Even though the ratio between terms is not constant like in geometric series, if it is manageable ($L<1$) then the series converges

Test	useful	converges if	diverges if
Terms $\nrightarrow 0$	$\sum a_{n}, a_{n} \nrightarrow 0$ try this test first	$\mathrm{n} / \mathrm{a}: \mathrm{a}_{n} \rightarrow 0$ inconclusive	$a_{n} \nrightarrow 0$
Finite series		always	
Geometric	$\sum_{0}^{\infty} a x^{n}$, const x	$\|x\|<1$ to $\frac{a}{1-x}$	$\|x\| \geq 1$
Integral	pos, dec a_{n} known \int	$\int^{\infty} a_{n} d n$ converges	$\int_{1}^{\infty} a_{n} d n$ diverges
	ex: p -series $\sum \frac{1}{n^{p}}$	\int bounds \sum	
Linearity	$\sum a_{n}+b_{n}$	both conv	only 1 div
Comparison	conv by larger \sum div by smaller \rangle	$0 \leq a_{n} \leq b_{n}$	$0 \leq b_{n} \leq a_{n}$
Limit Comp	$0<\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}<\infty$	$\sum b_{n}$ conv	$\sum b_{n}$ div
	pos terms	same behavior	
Ratio	$\lim _{n \rightarrow \infty} \frac{\left\|a_{n+1}\right\|}{\left\|a_{n}\right\|} \neq 1$	$L<1$	$L>1$

Clicker Question

4. Which test will help you determine if the series $\sum e^{-n}$ converges or diverges?
a) geometric series
b) integral test
c) ratio test
d) more than one of the above but not all
e) all of a, b and c

9.4: Absolute Value Test for Alternating Series

- Absolute Value Test: If $\sum\left|a_{n}\right|$ converges, then so does $\sum a_{n}$.
$\sum_{n=1}^{\infty} \frac{1}{2}^{n}$
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n}}$

9.4: Absolute Value Test for Alternating Series

- Absolute Value Test: If $\sum\left|a_{n}\right|$ converges, then so does $\sum a_{n}$.
$\sum_{n=1}^{\infty} \frac{1}{2}^{n}$

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n}}
$$

Caution: reverse implication is false!
$\sum_{n=1}^{\infty} \frac{1}{n} \quad \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$

9.4: Alternating Series Test

- Decreasing terms, alternating terms
- If $\left|a_{n}\right| \geq\left|a_{n+1}\right|$ and $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then the alternating series converges.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\ldots
$$

Clicker Question

4. Which are valid arguments?
a) $\sum \frac{4}{n}$ converges because $\lim _{n \rightarrow \infty} \frac{4}{n}=0$
b) $\sum(-1)^{n} n^{2}$ converges by the alternating series test
c) both are valid
d) neither are valid

9.4: Absolute or Conditionally Convergent?

9.4: Absolute or Conditionally Convergent?

Conditionally Convergent: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$

Alternating Series Estimation

- Truncation error of using S_{n}, the partial sum, to approximate an alternate series, is less than the absolute value of next term in the series a_{n+1}
- Example $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{2}}$
S_{9} has an error bounded by $\frac{1}{(9+1)^{2}}$

History

- ratio test: first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test
- alternating series test was used by Gottfried Leibniz and is sometimes known as Leibniz's test, Leibniz's rule, or the Leibniz criterion

- widely used in mathematics and other quantitative disciplines such as physics, computer science, \& finance.

Terms $\nrightarrow 0$
Geometric Integral

Linearity
Comparison
Limit Comp

Ratio
Alternating
Absolute
$\sum a_{n}, a_{n} \nrightarrow 0$ try this test first $\sum a x^{n}$, const x pos, dec a_{n} known \int
ex: p-series $\sum \frac{1}{n^{p}}$
$\sum a_{n}+b_{n}$
conv by larger \sum div by smaller \sum $0<\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}<\infty$ pos terms
$\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} \neq 1$ alternating terms $\left|a_{n}\right|$ decreasing alternating terms $\quad \sum\left|a_{n}\right|$ conv \quad inconclusive
inconclusive
$\mathrm{n} / \mathrm{a}: a_{n} \rightarrow 0$
$|x|<1$ to $\frac{a}{1-x} \quad|x| \geq 1$
$\int^{\infty} a_{n} d n \quad \int^{\infty} a_{n} d n$
converges
\int bounds \sum
both conv
$0 \leq a_{n} \leq b_{n}$
only 1 div
$\begin{array}{ll}\sum b_{n} \text { conv } & \sum b_{n} \text { div } \\ \sum b_{n} \text { conv } & \sum b_{n} \text { div }\end{array}$
same behavior
$L<1$
$\lim _{n \rightarrow \infty}\left|a_{n}\right|=0 \quad \lim _{n \rightarrow \infty}\left|a_{n}\right| \neq 0$

