9.4: (Direct) Comparison Test

- For positive terms $a_{n} \leq b_{n}$
- If a series $\sum b_{n}$ converges, then so does any smaller (term by term) series
- If a series $\sum a_{n}$ diverges, then so does any larger (term by term) series
- Example: $\sum \frac{1}{\ln (n!)} \quad \frac{1}{\ln (n!)}>\frac{1}{\ln \left(n^{n}\right)}=\frac{1}{n \ln (n)}$

Picture credit: Calculus: Single Variable

- It can be very difficult to identify $a_{n} \leq b_{n}$ for the direct comparison test-we can develop easier to use and more powerful tests.
- Examine limits of ratios when a series is not geometric in the Limit Comparison Test and the Ratio Test

9.4: Limit Comparison Test

- If $a_{n}>0$ and $b_{n}>0$ eventually, and $0<\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}<\infty$, then $\sum a_{n}$ behaves the same way as $\sum b_{n}$.

- Polynomial quotients: $\sum \frac{p(n)}{q(n)}$: try $b_{n}=$ ratio highest powers
- Example: $\sum \frac{n^{2}-4}{4 n^{3}+3 n-8}$

9.4: Limit Comparison Test

- If $a_{n}>0$ and $b_{n}>0$ eventually, and $0<\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}<\infty$, then $\sum a_{n}$ behaves the same way as $\sum b_{n}$.

Image: http://notengofuerzaspararendirme.com/las-cosas-por-su-nombre/where_is_the_limit_petit/

- Polynomial quotients: $\sum \frac{p(n)}{q(n)}$: try $b_{n}=$ ratio highest powers
- Example: $\sum \frac{n^{2}-4}{4 n^{3}+3 n-8} \quad$ assumption: $a_{n}>0$ eventually

9.4: Limit Comparison Test

- If $a_{n}>0$ and $b_{n}>0$ eventually, and $0<\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}<\infty$, then $\sum a_{n}$ behaves the same way as $\sum b_{n}$.

- Polynomial quotients: $\sum \frac{p(n)}{q(n)}$: try $b_{n}=$ ratio highest powers
- Example: $\sum \frac{n^{2}-4}{4 n^{3}+3 n-8} \quad$ assumption: $a_{n}>0$ eventually

Compare to $\sum \frac{n^{2}}{4 n^{3}}=\sum \frac{1}{4 n} \quad b_{n}>0$
$\lim _{n \rightarrow \infty} \frac{a n}{b_{n}}=$

9.4: Limit Comparison Test

- If $a_{n}>0$ and $b_{n}>0$ eventually, and $0<\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}<\infty$, then $\sum a_{n}$ behaves the same way as $\sum b_{n}$.

Image: http://notengofuerzaspararendirme.com/las-cosas-por-su-nombre/where_is_the_limit_petit/

- Polynomial quotients: $\sum \frac{p(n)}{q(n)}$: try $b_{n}=$ ratio highest powers
- Example: $\sum \frac{n^{2}-4}{4 n^{3}+3 n-8} \quad$ assumption: $a_{n}>0$ eventually

Compare to $\sum \frac{n^{2}}{4 n^{3}}=\sum \frac{1}{4 n} \quad b_{n}>0$
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\ldots=\lim _{n \rightarrow \infty} \frac{1-\frac{4}{n^{2}}}{1+\frac{3}{4 n^{2}}-\frac{8}{4 n^{3}}}=$

9.4: Limit Comparison Test

- If $a_{n}>0$ and $b_{n}>0$ eventually, and $0<\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}<\infty$, then $\sum a_{n}$ behaves the same way as $\sum b_{n}$.

- Polynomial quotients: $\sum \frac{p(n)}{q(n)}$: try $b_{n}=$ ratio highest powers
- Example: $\sum \frac{n^{2}-4}{4 n^{3}+3 n-8} \quad$ assumption: $a_{n}>0$ eventually Compare to $\sum \frac{n^{2}}{4 n^{3}}=\sum \frac{1}{4 n}$ $b_{n}>0$

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\ldots=\lim _{n \rightarrow \infty} \frac{1-\frac{4}{n^{2}}}{1+\frac{3}{4 n^{2}} \frac{8}{4 n^{3}}}=1 \quad 0<\lim _{n \rightarrow \infty} \frac{\frac{2 n}{b_{n}}<\infty}{}
$$

Original series diverges as $\sum \frac{1}{4 n}$ diverges by integral test.

9.4: Ratio Test: Is the Series Approximately Geometric?
 - For $\sum a_{n}$, if $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=L$

$L<1$ implies convergence
$L>1$ implies divergence
$L=1$ gives no information

- useful: algebra often reduces factorials (n!) or exponents
- Though not geometric, if the ratio in the limit is manageable and approaches $L<1$ then the series converges

when the terms of a series do go to 0 in the terms $\nrightarrow 0$ or the ratio test yields 1

when the terms of a series do go to 0 in the terms $\nrightarrow 0$ or
the ratio test yields 1

inconclusive, so try another test

Clicker Question

1. Which tests will help you determine if the series $\sum_{n=1}^{\infty} e^{-n}$
converges or diverges? Examine assumptions and conclusions on the Series Theorems handout.
a) geometric series
b) integral test
c) ratio test
d) more than one of the above but not all
e) all of a, b and c

After you have responded to the clicker question, select one test to fully document

Clicker Question

2. Can we use the limit comparison test on $\sum_{n=1}^{\infty} \frac{5 n+3}{6 n^{2}}$
a) yes and I have a good reason why
b) yes but I am unsure of why
c) no, but I am unsure of why
d) no, and I have a good reason why
e) I was unable to use the limit comparison test

Test
useful
converges if diverges if
Limit Comp polynomial quotient a_{n}

$$
a_{n}, b_{n}>0 \text { eventually } \quad \sum b_{n} \text { conv } \quad \sum b_{n} \text { div }
$$

$$
0<\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}<\infty
$$

Clicker Question

3. For $\sum_{n=0}^{\infty} 2^{-n}$ compute $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=L$ as in the ratio test
a) $L<1$ so the ratio test shows the series converges
b) $L>1$ so the ratio test shows the series diverges
c) $L=1$ so the ratio test is inconclusive
d) L does not exist so the ratio test is inconclusive

Next, what are all the series theorems we can successfully apply here?

9.4: Alternating Series Test

- Decreasing terms, alternating terms
- If $\left|a_{n}\right| \geq\left|a_{n+1}\right|$ and $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then the alternating series converges.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{-1}}{n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\ldots
$$

Clicker Question

4. Which are valid arguments?
a) $\sum \frac{4}{n}$ converges because $\lim _{n \rightarrow \infty} \frac{4}{n}=0$
b) $\sum(-1)^{n} n^{2}$ converges by the alternating series test
c) both are valid
d) neither are valid

Test useful
converges if diverges if
$\begin{array}{lll}\text { Terms } \nrightarrow 0 & \sum a_{n}, a_{n} \nrightarrow 0 & \text { inconclusive } \\ \text { Alternating } & \text { alternating terms } & \lim _{n \rightarrow \infty}\left|a_{n}\right|=0\end{array}$ Series Test $\quad\left|a_{n}\right|$ decreasing

9.4: Absolute or Conditionally Convergent?

Image http://math.cos.ucf.edu/~/anevai/courses/creative-works/mac2312-a/creative-3/
resources/thomas.jpg

9.4: Absolute or Conditionally Convergent?

Image http://math.cos.ucf.edu/~/anevai/courses/creative-works/mac2312-a/creative-3/
resources/thomas.jpg
Conditionally Convergent: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$

Alternating Series Estimation

- Truncation error of using S_{n}, the partial sum, to approximate an alternating series of $\left|a_{n}\right|$ decreasing terms, is less than the absolute value of next term in the series $\left|a_{n+1}\right|$

Alternating Series Estimation

- Truncation error of using S_{n}, the partial sum, to approximate an alternating series of $\left|a_{n}\right|$ decreasing terms, is less than the absolute value of next term in the series

$$
\left|a_{n+1}\right|
$$

- Example $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{2}}$
S_{9} has an error bounded by $\left|a_{10}\right|=\left|(-1)^{10+1} \frac{1}{(10)^{2}}\right|=\frac{1}{(10)^{2}}$

[^0]http://www.matrixlab-examples.com/harmonic-series.html

History

- ratio test: first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's or Cauchy test
- alternating series test: used by Gottfried Leibniz also known as Leibniz's test, Leibniz's rule, or criterion

NEVER DISCUSS
INFINITY WITH A
MATHEMATICIAN.
YOU'LL NEVER
HEAR THE END
OF IT
- widely used in mathematics and other quantitative disciplines such as physics, computer science, \& finance.
Images https://i.kinja-img.com/gawker-media/image/upload/s--x6az_AUE--/c_fit,f1_
progressive, q_80,w_320/19crwoe2xg55mjpg.jpg, https:
//s-media-cache-ak0.pinimg.com/736x/ab/b0/7a/abb07a14c8dcc424d9a9a0676640c7b8=jpg

[^0]: Images: http://calculus.seas.upenn.edu/?n=Main.AlternatingSeries,

