Slides Question 1

For which of the following integrals is integration by parts a reasonable choice?

Write down your response on paper, and discuss it with a few neighbors.
a) $\int x^{10} \ln x d x$
b) $\int \sin \left(x^{2}\right) d x$
c) both of the above
d) none of the above

Slides Question 2

For which of the following integrals is integration by substitution a reasonable choice?

Write down your response on paper, and discuss it with a few neighbors.
a) $\int \frac{\sin (x)}{x} d x$
b) $\int \frac{e^{x}-e^{-x}}{\left(e^{x}-e^{-x}\right)^{3}} d x$
c) Both of the above
d) None of the above

The difference between integrating...

Is the integral a w-subs, parts, both, or neither?

- $\int x e^{-x^{2}} d x$

The difference between integrating...

Is the integral a w-subs, parts, both, or neither?

- $\int x e^{-x^{2}} d x$
w-subs: $w=-x^{2}, d w=-2 x d x$ which we have up to a constant. The integral converts to $\int e^{w} \frac{d w}{-2}$. not parts as w-subs already works (and because we can't integrate $v^{\prime}=e^{-x^{2}}$ from detail)

The difference between integrating...

Is the integral a w-subs, parts, both, or neither?

- $\int x e^{-x^{2}} d x$
w-subs: $w=-x^{2}, d w=-2 x d x$ which we have up to a constant. The integral converts to $\int e^{w} \frac{d w}{-2}$. not parts as w-subs already works (and because we can't integrate $v^{\prime}=e^{-x^{2}}$ from detail)
- $\int x e^{-5 x} d x$

The difference between integrating...

Is the integral a w-subs, parts, both, or neither?

- $\int x e^{-x^{2}} d x$ w-subs: $w=-x^{2}, d w=-2 x d x$ which we have up to a constant. The integral converts to $\int e^{w} \frac{d w}{-2}$. not parts as w-subs already works (and because we can't integrate $v^{\prime}=e^{-x^{2}}$ from detail)
- $\int x e^{-5 x} d x$

Both: parts because it is a product of two different functions (algebraic and exponential) where w-subs doesn't initially apply, and after applying detail (with $v^{\prime}=e^{-5 x}$, integrate by w-subs), we get $\int u^{\prime} v d x$ that we can integrate

The difference between integrating...

Is the integral a w-subs, parts, both, or neither?

- $\int x e^{-x^{2}} d x$ w-subs: $w=-x^{2}, d w=-2 x d x$ which we have up to a constant. The integral converts to $\int e^{w} \frac{d w}{-2}$. not parts as w-subs already works (and because we can't integrate $v^{\prime}=e^{-x^{2}}$ from detail)
- $\int x e^{-5 x} d x$

Both: parts because it is a product of two different functions (algebraic and exponential) where w-subs doesn't initially apply, and after applying detail (with $v^{\prime}=e^{-5 x}$, integrate by w-subs), we get $\int u^{\prime} v d x$ that we can integrate

- $\int e^{-x^{2}} d x$ not elementary, later we'll see numerical methods and Taylor series approximations

History and Applications

Integration by Parts is attributed to Brook Taylor (1685-1731) Parts is useful when...

- deriving the Euler-Lagrange equation-how a physical system evolves through time from Hamilton's Least Action Principle
- CRC Handbook of Chemistry and Physics
- Engineering
- Journal of Geology and Geophysics. Earthquakes
- Image processing
- ... integrals made up of function products: When in doubt, integrate by parts [Micah Milinovich]

