8.2 Volume (Revolutions) and Arc Length

- Volume by revolving a region about an axis. Slice \perp to revolution. Riemann sums \rightarrow integral.
- Common forms:

8.2 Volume (Revolutions) and Arc Length

- Volume by revolving a region about an axis. Slice \perp to revolution. Riemann sums \rightarrow integral.
- Common forms: solid cylindrical region: $\int_{a}^{b} \pi r^{2} d x$

8.2 Volume (Revolutions) and Arc Length

- Volume by revolving a region about an axis. Slice \perp to revolution. Riemann sums \rightarrow integral.
- Common forms: solid cylindrical region: $\int_{a}^{b} \pi r^{2} d x$ annular/washer region:

8.2 Volume (Revolutions) and Arc Length

- Volume by revolving a region about an axis. Slice \perp to revolution. Riemann sums \rightarrow integral.
- Common forms: solid cylindrical region: $\int_{a}^{b} \pi r^{2} d x$ annular/washer region:

$$
\int_{a}^{b} \pi r_{\text {outer }}^{2} d x-\int_{a}^{b} \pi r_{\text {inner }}^{2} d x=\int_{a}^{b} \pi\left(r_{\text {outer }}^{2}-r_{\text {inner }}^{2}\right) d x
$$

8.2 Volume (Revolutions) and Arc Length

- Volume by revolving a region about an axis. Slice \perp to revolution. Riemann sums \rightarrow integral.
- Common forms: solid cylindrical region: $\int_{a}^{b} \pi r^{2} d x$ annular/washer region:

$$
\int_{a}^{b} \pi r_{\text {outer }}^{2} d x-\int_{a}^{b} \pi r_{\text {inner }}^{2} d x=\int_{a}^{b} \pi\left(r_{\text {outer }}^{2}-r_{\text {inner }}^{2}\right) d x
$$

- Key is to figure out the radius (or radii) via pics

What I want you to show me... reasoning for radius, integral

Clicker Question

1. If R is rotated about the x-axis then the volume is given by

a) $\int_{a}^{b}(g(x)-f(x)) d x$
b) $\int_{a}^{b} \pi\left(g(x)^{2}-f(x)^{2}\right) d x$
c) both of the above
d) none of the above
e) no way to tell without more information

8.2 Volume (Revolutions) and Arc Length
 - Pythagorean looks good until we see BOTH $\triangle x, \Delta y$

8.2 Volume (Revolutions) and Arc Length

- Pythagorean looks good until we see BOTH $\triangle x, \Delta y$

- $\frac{\Delta y}{\Delta x} \approx$ slope $=f^{\prime}(x)$, so

8.2 Volume (Revolutions) and Arc Length

- Pythagorean looks good until we see BOTH $\triangle x, \Delta y$

- $\frac{\Delta y}{\Delta x} \approx$ slope $=f^{\prime}(x)$, so $\Delta y \approx f^{\prime}(x) \triangle x$

8.2 Volume (Revolutions) and Arc Length

- Pythagorean looks good until we see BOTH $\triangle x, \Delta y$

- $\frac{\Delta y}{\Delta x} \approx$ slope $=f^{\prime}(x)$, so $\triangle y \approx f^{\prime}(x) \triangle x$
- arc length $\approx \sqrt{\triangle x^{2}+\left(f^{\prime}(x) \triangle x\right)^{2}}=$

8.2 Volume (Revolutions) and Arc Length

- Pythagorean looks good until we see BOTH $\triangle x, \Delta y$

- $\frac{\Delta y}{\Delta x} \approx$ slope $=f^{\prime}(x)$, so $\Delta y \approx f^{\prime}(x) \triangle x$
- arc length $\approx \sqrt{\triangle x^{2}+\left(f^{\prime}(x) \triangle x\right)^{2}}=\sqrt{\triangle x^{2}\left(1+\left(f^{\prime}(x)\right)^{2}\right)}=$

8.2 Volume (Revolutions) and Arc Length

- Pythagorean looks good until we see BOTH $\triangle x, \Delta y$

- $\frac{\Delta y}{\Delta x} \approx$ slope $=f^{\prime}(x)$, so $\Delta y \approx f^{\prime}(x) \triangle x$
- arc length $\approx \sqrt{\triangle x^{2}+\left(f^{\prime}(x) \triangle x\right)^{2}}=\sqrt{\triangle x^{2}\left(1+\left(f^{\prime}(x)\right)^{2}\right)}=$ $\sqrt{1+\left(f^{\prime}(x)\right)^{2}} \triangle x$

8.2 Volume (Revolutions) and Arc Length

- Pythagorean looks good until we see BOTH $\triangle x, \Delta y$

- $\frac{\Delta y}{\Delta x} \approx$ slope $=f^{\prime}(x)$, so $\Delta y \approx f^{\prime}(x) \triangle x$
- arc length $\approx \sqrt{\triangle x^{2}+\left(f^{\prime}(x) \triangle x\right)^{2}}=\sqrt{\triangle x^{2}\left(1+\left(f^{\prime}(x)\right)^{2}\right)}=$ $\sqrt{1+\left(f^{\prime}(x)\right)^{2}} \triangle x$
- arc length $=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$

What I want you to show me... f', integral

Clicker Question

2. The length of the graph of $y=\sin \left(x^{2}\right)$ from $x=0$ to $x=2 \pi$ is calculated by
a) $\int_{0}^{2 \pi} \cos \left(x^{2}\right) d x$
b) $\int_{0}^{2 \pi} \sqrt{1+\sin x^{2}} d x$
c) $\int_{0}^{2 \pi} \sqrt{1+\cos ^{2}\left(x^{4}\right)} d x$
d) $\int_{0}^{2 \pi} \sqrt{1+\cos ^{2}\left(x^{2}\right)} d x$
e) none of the above

History and Applications

- Johannes Kepler (1571-1630) computed the volume of a torus
- 1641 Evangelista Torricelli: Torricelli's Trumpet
- length of an irregular arc was thought to be impossible to compute.
- approximating π
- logarithmic spiral (Torricelli/John Wallis), cycloid (Christopher Wren), catenary (Gottfried Leibniz)
- Hendrik van Heuraet and Pierre de Fermat
- Arc-Length Parameterized Spline Curves for Real-Time Simulation... Motion control is simple if object trajectories are parameterized by arc length

