8.5 Work: Varying Force

- Work is force \times distance displaced only applies if the force is constant while it is exerted over the distance
- Integrals apply when we vary the force. The idea is to slice so that the force is approximately constant on a slice for its displacement. Then $\sum \rightarrow \int$ like

8.5 Work: Varying Force

- Work is force \times distance displaced only applies if the force is constant while it is exerted over the distance
- Integrals apply when we vary the force. The idea is to slice so that the force is approximately constant on a slice for its displacement. Then $\sum \rightarrow \int$ like Hook's Law to stretch (and hold) a spring, where $F(x)=k x$ constant for displacement Δx and $W=\int F(x) d x$

8.5 Work: Varying Force

- Work is force \times distance displaced only applies if the force is constant while it is exerted over the distance
- Integrals apply when we vary the force. The idea is to slice so that the force is approximately constant on a slice for its displacement. Then $\sum \rightarrow \int$ like Hook's Law to stretch (and hold) a spring, where $F(x)=k x$ constant for displacement Δx and $W=\int F(x) d x$
- Often we need to calculate the force, like when it is a column of water: mass $=$ density \times volume, $\mathrm{F}=$ mass $\times g$
- We won't need to multiply by g because we'll have a density that already has a force component:

8.5 Work: Varying Force

- Work is force \times distance displaced only applies if the force is constant while it is exerted over the distance
- Integrals apply when we vary the force. The idea is to slice so that the force is approximately constant on a slice for its displacement. Then $\sum \rightarrow \int$ like Hook's Law to stretch (and hold) a spring, where $F(x)=k x$ constant for displacement Δx and $W=\int F(x) d x$
- Often we need to calculate the force, like when it is a column of water: mass $=$ density \times volume, $F=$ mass $\times g$
- We won't need to multiply by g because we'll have a density that already has a force component: weight (force in lbs) $=$ volume of a slice $\times 62.4 \mathrm{lbs} / \mathrm{ft}^{3}$ work on a slice $=$ volume $\times 62.4 \mathrm{lbs} / \mathrm{tt}^{3} \times$ slice displacement

Clicker Question

1. For which surfaces would we use similar triangles?
a) cone, pyramid, upside down pyramid
b) cylinder on its side like a buried tank, sphere, hemisphere
c) cylinder upright like a garbage can
d) area under the arctan ($2 x$) curve
e) other

Clicker Question

1. For which surfaces would we use similar triangles?
a) cone, pyramid, upside down pyramid
b) cylinder on its side like a buried tank, sphere, hemisphere
c) cylinder upright like a garbage can
d) area under the arctan ($2 x$) curve
e) other

Clicker Question

2. If we have a cylindrical oil tank of radius 3 m and height 10 m standing up on its circular base above ground like a garbage can would (i.e. NOT sideways) filled to a level of 7 m , then what is the work to pump out the oil in terms of h, where h is the height from the bottom of the tank to a slice? Oil has a density of $890 \mathrm{~kg} / \mathrm{m}^{3}$.
a) $\int_{0}^{10} 890 \times \pi 3^{2} d h \times(7-h)$
b) $\int_{0}^{10} 890 \times \pi 3^{2} d h$
c) $\int_{0}^{7} 890 \times \pi 3^{2} d h \times(10-h)$
d) $\int_{0}^{7} 890 \times 10 \times 2 \sqrt{3^{2}-(10-h)^{2}} \times d h \times h$
e) other

Clicker Question

2. If we have a cylindrical oil tank of radius 3 m and height 10 m standing up on its circular base above ground like a garbage can would (i.e. NOT sideways) filled to a level of 7 m , then what is the work to pump out the oil in terms of h, where h is the height from the bottom of the tank to a slice? Oil has a density of $890 \mathrm{~kg} / \mathrm{m}^{3}$.
a) $\int_{0}^{10} 890 \times \pi 3^{2} d h \times(7-h)$
b) $\int_{0}^{10} 890 \times \pi 3^{2} d h$
c) $\int_{0}^{7} 890 \times \pi 3^{2} d h \times(10-h)$
d) $\int_{0}^{7} 890 \times 10 \times 2 \sqrt{3^{2}-(10-h)^{2}} \times d h \times h$
e) other

Work is force times the distance displaced only applies if the force is constant while it is exerted over the distance.
$\mathrm{Fd}=\left(890 \mathrm{~kg} / \mathrm{m}^{3} \times\right.$ volume $) \times$ distance the slice displaced
$\int_{0}^{7} 890 \times \pi 3^{2} d h \times(10-h)$

History and Applications

- Archimedes buoyant forces inherent in fluids
- Sir Isaac Newton
- Work = weight lifted through a height: 1826 French mathematician Gaspard-Gustave Coriolis steam engines water out of flooded ore mines

