Chapter 11 DEs
 Group Work Target Practice

1. Hydrocodone bitartrate is used as a cough suppressant. After the drug is fully absorbed, the quantity in the body decreases at a rate proportional to the amount left in the body. The half-life of hydrocodone bitartrate in the body is 3.8 hours, and the usual dose is 10 mg .
a. Write a DE for the quantity, $Q(t)$, of hydrocodone bitartrate in the body at time t, in hours, since the drug was absorbed.
$\frac{d Q}{d t}=-k Q$, where the constant of proportionality, k is positive [or equivalently.
b. Find the equilibrium solution of the DE - the constant of proportionality is assumed to be nonzero. Based on the context, do you expect the equilibrium to be stable or unstable?
An equilibrium solution is when $\frac{d Q}{d t}=0$ and stays that way. Then set $\frac{d Q}{d t}=-k Q=0$, but k is nonzero, so $Q=0$. This means there is no drugs in the body. We expect this to be a stable solution, since Hydrocodone bitartrate leaves the body eventually.
c. Write the initial condition using the usual dose.

The usual dose is 10 mg at time 0 , so $Q(0)=10 \mathrm{mg}$
d. Write a half-life condition using the half-life (the time taken to fall to half its usual dose).
$Q(3.8)=5 \mathrm{mg}$, half of the starting dose
e. Here is how we would solve the DE and use the usual dose as the initial condition.

Separate: $\frac{d Q}{Q}=-k d t$
Integrate: $\ln |Q|=-k t+c$
Solve for Q, which is positive, so we can drop the absolute value sign, and exponentiate both sides: $Q=e^{-k t+c}=e^{-k t} e^{c}=c_{2} e^{-k t}$
The usual dose is 10 mg at time 0 , so plug in to solve for $c_{2}: 10=Q(0)=c_{2} e^{0}=c_{2}$. Then $Q=10 e^{-k t}$
f. Here is how we would use the half-life to find the constant of proportionality.
$Q(3.8)=5 \mathrm{mg}$, half of the starting dose:
$5=10 e^{-k 3.8}$ so $\frac{1}{2}=e^{-k 3.8}$. Take \ln of both sides: $\ln \frac{1}{2}=\ln e^{-k 3.8}$.
$\ln 1-\ln 2=-k 3.8$
$-\ln 2=-k 3.8$
$\frac{\ln 2}{3.8}=k$, so $k \approx .182$
g. We can then answer questions like, how much of the 10 mg dose is still in the body after 12 hours?
$Q(12)=10 e^{-.182 \cdot 12} \approx 1.126 \mathrm{mg}$
2. Write the differential equations and any initial and additional conditions:
a. A 20° (Celsius) yam is put in a 200° oven. Assume that the temperature of the yam is 120° after 30 minutes. What will the temperature be after 50 minutes?
Let $Y(t)$ be the yam temperature in celsius at time t in minutes.
The DE is $\frac{d Y}{d t}=-k(Y-200)$ where $k>0$ (note that $Y<200$, so Y-200 is negative and hence when multiplied by -k will give a positive derivative, which makes sense since the yam is heating up, so increasing temperature). The initial condition is $Y(0)=20$, and we are also given $Y(30)=120$, and asked to find $Y(50)$.
Separate: $\frac{d Y}{Y-200}=-k d t$
Integrate: $\ln |Y-200|=-k t+c$
Solve for $Y: 200-Y=|Y-200|=e^{-k t+c}=c_{2} e^{-k t}$ (notice that Y is less than 200, so the absolute value is the other way).
$Y=200-c_{2} e^{-k t}$.
Plug in the initial condition to solve for $c_{2}: 20=Y(0)=200-c_{2} e^{0}=200-c_{2}$, so $c_{2}=180$ and $Y=200-180 e^{-k t}$.
Use the condition that $Y(30)=120$ to solve for k :
$120=Y(3)=200-180 e^{-k \cdot 30}$
$-80=-180 e^{-k \cdot 30}$
$\frac{4}{9}=e^{-k \cdot 30}$
$\ln \frac{4}{9}=\ln e^{-k \cdot 30}=-k \cdot 30$
$k=-\ln \frac{4}{9} / 30 \approx .027$.
Plug in 50 to solve for the temperature: $Y(50)=200-180 e^{-.027 .50} \approx 153.3^{\circ}$
b. A detective finds a deceased individual at 9am. The temperature of the body is measured at 90.3° (Fahrenheit). One hour later, the temperature is 89°. Assume the temperature of the room has been maintained at a constant 68°. Estimate the time of death.
Let $T(t)$ be the temperature in Fahrenheit at time t in hours.
The DE is $\frac{d T}{d t}=-k(T-68)$ where $k>0$. The initial condition is $T(0)=90.3$, and we are also given $T(1)=89$, and asked to find t when $T(t)=98.6$.
Separation of variables and integration as in part a gives
$T=68+c_{2} e^{-k t}$.

Plug in the initial condition $T(0)=90.3$ to solve for $c_{2}=22.3$.
Use the condition that $T(1)=89$ to solve for $k: 89=68+22.3 e^{-k \cdot 1} \ldots k=-\ln (21 / 22.3) \approx$. 060064
So $T(t) \approx 68+22.3 e^{-.060064 t}$.
Set $T(t)=98.6$ and solve for t :
$68+22.3 e^{-.060064 t} \approx 98.6$
$e^{-.060064 t} \approx 30.6 / 22.3$ Take \ln both sides: $t \approx \ln (30.6 / 22.3) /(-.060064) \approx-5.27$ hours (ie before 9am), so 3:45 am, approximately.
c. At 1 pm there is a power failure, which is bad news for your electric heater. Assume it was 68° (Fahrenheit) when the power went out in the house, and it is 10° outside. At 10 PM it is 57°. If the outdoor temperature remains constant, what temperature will it be at 7 am the next morning? Should you worry about your water pipes freezing?

Let $T(t)$ be the temperature in Fahrenheit at time t in hours.
The DE is $\frac{d T}{d t}=-k(T-10)$ where $k>0$. The initial condition is $T(0)=68$, and we are also given $T(9)=57$, and asked to find $T(18)$.
Separation of variables and integration as in part a gives
$T=10+c_{2} e^{-k t}$.
Plug in the initial condition $T(0)=68$ to solve for $c_{2}=58$.
Use the condition that $T(9)=57$ to solve for k. See part b, which is similar for this portion.
$k=-1 / 9 \ln (47 / 58) \approx .0234$
So $T(t) \approx 10+58 e^{-.0234 t}$.
At 7 am , after 18 hours from $1 \mathrm{pm}, T(18) \approx 10+58 e^{-.0234 \cdot 18} \approx 48^{\circ}$, so the pipes won't freeze.
3. Write a differential equation for the balance in an investment fund with time measured in years when the balance is losing value at a continuous rate of 6.5% per year, and payments are being made out of the fund at a continuous rate of $\$ 50,000$ per year.

Let $P(t)$ be the principal in dollars at time t in years.
The DE is $\frac{d P}{d t}=-.065 P-50000$
4. Write a differential equation for $\frac{d S}{d t}$ in $\mathrm{kg} / \mathrm{min}$, where S is the salt in kg and t is in min: A tank containing salt mixed into water has salt added to the tank at the rate of 0.1 $\mathrm{kg} / \mathrm{min}$. The contents of the tank are kept thoroughly mixed, and the contents flow in and out at 10 liters $/ \mathrm{min}$. The tank contains 100 liters of water.
$\frac{d S}{d t}=$ rate of salt in - rate of salt out
Salt goes in at $0.1 \mathrm{~kg} / \mathrm{min}$.
Salt goes out at $\mathrm{Skg} / 100$ liters $\times 10$ liters $/ \mathrm{min}$ of contents flowing out. Notice the tank
has 100 liters at all times because the output liters/min is the same as the input.

$$
\frac{d S}{d t}=.1-.1 S
$$

