7.2 Integration by Parts Group Work Target Practice

Evaluate each of the following integrals in groups of two or three. For one of the integrals it is a straight parts. For one of the integrals you must use substitution after you use parts.

1. $\int \frac{\ln x}{x^{5}} d x$
detail: algebraic x^{-5} is before $\log \ln x$, so the derivative (d) from detail shows $v^{\prime}=x^{-5}$.
$u=\ln x \quad v^{\prime}=x^{-5}$
$u^{\prime}=\frac{1}{x} \quad v=\frac{x^{-4}}{-4}$
$u v-\int u^{\prime} v d x=\ln x \frac{x^{-4}}{-4}-\int \frac{1}{x} \frac{x^{-4}}{-4} d x=\ln x \frac{x^{-4}}{-4}-\int \frac{1}{-4} \frac{x^{-4}}{x} d x$
(by the rules of exponents) $=\ln x \frac{x^{-4}}{-4}-\int \frac{x^{-4-1}}{-4} d x$

$$
=\frac{\ln x}{-4 x^{4}}-\int \frac{x^{-5}}{-4} d x=\frac{\ln x}{-4 x^{4}}-\int \frac{1}{-4} x^{-5} d x=\frac{\ln x}{-4 x^{4}}-\frac{1}{-4} \frac{x^{-4}}{(-4)}+c=\frac{\ln x}{-4 x^{4}}-\frac{1}{16 x^{4}}+c
$$

2. $\int \arcsin x d x$

There are only a few applications of parts like this where $v^{\prime}=1: \int \ln x d x$ from class and inverse trig functions like this one.
detail: algebraic 1 is before inverse $\operatorname{trig} \arcsin x$, so the derivative (d) from detail shows $v^{\prime}=1$.

$$
\begin{array}{ll}
u=\arcsin x & v^{\prime}=1 \\
u^{\prime}=\frac{1}{\sqrt{1-x^{2}}} \quad v=x \\
u v-\int u^{\prime} v d x=x \arcsin x-\int x \frac{1}{\sqrt{1-x^{2}}} d x
\end{array}
$$

This integral can be completed using $w-s u b$, with $w=1-x^{2}$, and $d w=-2 x d x$ since we have the x to work with. The 2 goes on the other side (we have a negative from parts we can use): $\frac{d w}{2}=-x d x$
$=x \arcsin x-\int x \frac{1}{\sqrt{1-x^{2}}} d x=x \arcsin x+\int \frac{1}{\sqrt{w}} \frac{d w}{2}=x \arcsin x+\int w^{-\frac{1}{2}} \frac{d w}{2}$
$=x \arcsin x+\frac{w^{\frac{1}{2}}}{\frac{1}{2}} \frac{1}{2}=x \arcsin x+w^{\frac{1}{2}}=x \arcsin x+\sqrt{1-x^{2}}+c$

