7.4 Partial Fractions Group Work Target Practice

Work in groups of two or three.

1. For $\frac{2}{s^{4}-1}$ write out the factors and the generic forms for the numerators, but do not solve for the constants.
$s^{4}-1=\left(s^{2}-1\right)\left(s^{2}+1\right)=(s-1)(s+1)\left(s^{2}+1\right)$ is broken up into linear and irreducible quadratic pieces. In partial fractions, each linear factor (including any repeated linear terms) gets a constant as the numerator, and each irreducible quadratic gets a linear numerator. In this case we have:
$\frac{2}{s^{4}-1}=\frac{A}{s-1}+\frac{B}{s+1}+\frac{C s+D}{s^{2}+1}$
While I didn't ask you to progress further for this problem to find the linear equations, nor solve for the constants, I wanted to comment on the generic methods of integration that could arise here. Integrals of the form $\frac{A}{s-1}$ and $\frac{B}{s+1}$ are each w-subs. To integrate the last term we would generally break it up into a sum of integrals. However in this specific example C will actually be 0 (if it weren't then its integral would be another w-subs) The D integral is a calc 1 integral for $\arctan (s)$
2. Solve for $\int \frac{3 x+11}{x^{2}-x-6} d x$ using the method of partial fractions. Show work. $x^{2}-x-6=(x-3)(x+2)$ is broken up into linear and irreducible quadratic pieces In partial fractions, each linear factor (including any repeated linear terms) gets a constant as the numerator, and each irreducible quadratic gets a linear numerator. In this case we have:
$\frac{3 x+11}{(x-3)(x+2)}=\frac{A}{x-3}+\frac{B}{x+2}$
To solve for A and B multiply through by the denominator of the left side: $(\mathrm{x}-3)(\mathrm{x}+2)$.
$3 x+11=\frac{A}{x-3}(x-3)(x+2)+\frac{B}{x+2}(x-3)(x+2)=A(x+2)+B(x-3)$
Next multiply out and then collect like terms from the left and ride hand sides of the equations, to create linear equations in terms of the coefficients A and B :
$3 x+11=A x+2 A+B x-3 B$
x terms: $3=A+B$
constant terms: $11=2 A-3 B$
Solve this linear system for the constants. For calc 2, substitution works fine. If you go on to take linear algebra, elimination methods will be the focus there.

From eq 1: $A=3-B$, sub in to eq $2: 11=2(3-B)-3 B=6-5 B$, so $B=-1$. Sub back into eq 1: $A=4$.
$\int \frac{3 x+11}{x^{2}-x-6} d x=\int \frac{4}{x-3} d x+\int \frac{-1}{x+2} d x=4 \ln |x-3|-\ln |x+2|+c$, where the last integrals work because of $w=x \pm a$, where a is constant, then $d w=d x$, so in each case we have numbers times $\int \frac{d w}{w}$.

