7.6 Improper Integrals Group Work Target Practice

1. Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{1}{\cos (x)^{2}} d x$.

Oops- $\cos (x)$ is 0 at $\frac{\pi}{2}$, making the denominator 0 , so the integral is improper. Convert using the definition of $\sec (x)$, because this turns this integral into a known one from calc 1. So we write out the integral on a finite region using limits:
$\lim _{b \rightarrow \frac{\pi^{-}}{}-} \int_{0}^{b} \sec ^{2}(x) d x$. Then we integrate: $\left.\lim _{b \rightarrow \frac{\pi}{2}-} \tan (x)\right|_{0} ^{b}$. Then we plug in the endpoints: $\lim _{b \rightarrow \frac{\pi}{2}^{-}} \tan (b)-\tan (0)$.
This improper integral diverges because $\tan (x)$ does not tend to a finite number as $b \rightarrow \frac{\pi}{2}^{-}$as per the graph below:

2. Evaluate $\int_{0}^{\infty} x e^{-x} d x$. Hint: You'll need to apply L'Hôpital's rule at the end.

This integral is improper because it has ∞ in the integral limits, so we write it as a limit: $\lim _{b \rightarrow \infty} \int_{0}^{b} x e^{-x} d x$. This is integration by parts. It is not $w-$ subs because we don't have a function inside another function and its derivative (up to a scalar) to make use of (because we are missing an x to pair with $d x$ for $w=-x^{2}$ and $d w=-2 x d x$). We can use parts because we have a product of two different functions that fit into detail: exponential e^{-x} is before algebraic x, so the derivative (d) from detail shows $v^{\prime}=e^{-x}$. $u=x \quad v^{\prime}=e^{-x}$
$u^{\prime}=1 \quad v=-e^{-x}$ (if you don't understand the - , write out $w=-x$ for $w-$ subs).
$u v-\int u^{\prime} v d x=\lim _{b \rightarrow \infty}-\left.x e^{-x}\right|_{0} ^{b}-\int-e^{-x} d x=\lim _{b \rightarrow \infty}-\left.x e^{-x}\right|_{0} ^{b}-\left.e^{-x}\right|_{0} ^{b}$
Plug in b and subtract 0 plugged in:
$=\lim _{b \rightarrow \infty}-b e^{-b}--0 e^{-0}-e^{-b}--e^{-0}=\lim _{b \rightarrow \infty}-\frac{b}{e^{b}}+\frac{0}{1}-\frac{1}{e^{b}}+1$
We'll need L'Hôpital's on $-\frac{b}{e^{b}}$ which tends to $\frac{\infty}{\infty}$, so take the derivative of the numerator and (separately) the denominator:
$=\lim _{b \rightarrow \infty}-\frac{1}{e^{b}}+\frac{0}{1}-\frac{1}{e^{b}}+1$.
exponentials get large, so one over them get smaller and smaller, and hence the integral converges to $0+0+0+1=1$.

