8.2 Volume of Surface of Revolutions

1. Sketch a graph of the object you want to find the volume of
2. What axis are you revolving about?
3. Slice perpendicular to this axis of revolution. Sketch a picture of a Riemann slice on your graph.
4. Which is the infinitesimal part of the slice? Circle: Δx or Δy
5. Is the slice a solid cylindrical region or an annular/washer region?

If it is a solid region, what is r in terms of the integration variable?
If it is an annular region, what is $r_{\text {outer }}$? What is $r_{\text {inner }}$ in terms of this variable?
6. What is the Riemann sum approximation? \sum
7. What is a and b ? Write the integral?

Common forms: $\int_{a}^{b} \pi r^{2} d x$ or $\int_{a}^{b} \pi\left(r_{\text {outer }}^{2}-r_{\text {inner }}^{2}\right) d x=\int_{a}^{b} \pi r_{\text {outer }}^{2} d x-\int_{a}^{b} \pi r_{\text {inner }}^{2} d x$

1. Sketch a graph of the object you want to find the volume of
2. What axis are you revolving about?
3. Slice perpendicular to this axis of revolution. Sketch a picture of a Riemann slice on your graph.
4. Which is the infinitesimal part of the slice? Circle: Δx or Δy
5. Is the slice a solid cylindrical region or an annular/washer region?

If it is a solid region, what is r in terms of the integration variable?
If it is an annular region, what is $r_{\text {outer }}$? What is $r_{\text {inner }}$ in terms of this variable?
6. What is the Riemann sum approximation? \sum
7. What is a and b ? Write the integral?

Common forms: $\int_{a}^{b} \pi r^{2} d x$ or $\int_{a}^{b} \pi\left(r_{\text {outer }}^{2}-r_{\text {inner }}^{2}\right) d x=\int_{a}^{b} \pi r_{\text {outer }}^{2} d x-\int_{a}^{b} \pi r_{\text {inner }}^{2} d x$

1. Sketch a graph of the object you want to find the volume of
2. What axis are you revolving about?
3. Slice perpendicular to this axis of revolution. Sketch a picture of a Riemann slice on your graph.
4. Which is the infinitesimal part of the slice? Circle: Δx or Δy
5. Is the slice a solid cylindrical region or an annular/washer region?

If it is a solid region, what is r in terms of the integration variable?
If it is an annular region, what is $r_{\text {outer }}$? What is $r_{\text {inner }}$ in terms of this variable?
6. What is the Riemann sum approximation? \sum
7. What is a and b ? Write the integral?

$$
\text { Common forms: } \int_{a}^{b} \pi r^{2} d x \text { or } \int_{a}^{b} \pi\left(r_{\text {outer }}^{2}-r_{\text {inner }}^{2}\right) d x=\int_{a}^{b} \pi r_{\text {outer }}^{2} d x-\int_{a}^{b} \pi r_{\text {inner }}^{2} d x
$$

1. Sketch a graph of the object you want to find the volume of
2. What axis are you revolving about?
3. Slice perpendicular to this axis of revolution. Sketch a picture of a Riemann slice on your graph.
4. Which is the infinitesimal part of the slice? Circle: Δx or Δy
5. Is the slice a solid cylindrical region or an annular/washer region?

If it is a solid region, what is r in terms of the integration variable?
If it is an annular region, what is $r_{\text {outer }}$? What is $r_{\text {inner }}$ in terms of this variable?
6. What is the Riemann sum approximation? \sum
7. What is a and b ? Write the integral?

Common forms: $\int_{a}^{b} \pi r^{2} d x$ or $\int_{a}^{b} \pi\left(r_{\text {outer }}^{2}-r_{\text {inner }}^{2}\right) d x=\int_{a}^{b} \pi r_{\text {outer }}^{2} d x-\int_{a}^{b} \pi r_{\text {inner }}^{2} d x$

