(1) What test, if any, for $\sum_{n=1}^{\infty} \frac{n^{5}}{n^{5}+1}$?
(a) terms $\nrightarrow 0$
D) geometric
(3) integral test
(©) alternating series test (AST)
© other
(1) What test, if any, for $\sum_{n=1}^{\infty} \frac{n^{5}}{n^{5}+1}$?
(a) terms $\nrightarrow 0$
D) geometric
(0) integral test
(©) alternating series test (AST)
(D) other
(2) Contrast with $\sum_{n=1}^{\infty} \frac{n^{4}}{n^{5}+1}$
(1) What test, if any, for $\sum_{n=1}^{\infty} \frac{n^{5}}{n^{5}+1}$?
(a) terms $\nrightarrow 0$
(0) geometric
(0) integral test
(©) alternating series test (AST)
(2) other
(2) Contrast with $\sum_{n=1}^{\infty} \frac{n^{4}}{n^{5}+1}$
can't use terms $\nrightarrow 0$ (they are going to 0 !)-use another test integral (+, eventually decreasing, known integral) or limit comparison with $\sum \frac{n^{4}}{n^{5}}=\sum \frac{1}{n}$
(1) What test, if any, for $\sum_{n=1}^{\infty} \frac{n^{5}}{n^{5}+1}$?
(a) terms $\nrightarrow 0$
(b) geometric
(0) integral test
(©) alternating series test (AST)
(2) other
(2) Contrast with $\sum_{n=1}^{\infty} \frac{n^{4}}{n^{5}+1}$
can't use terms $\nrightarrow 0$ (they are going to 0 !)-use another test integral (+, eventually decreasing, known integral) or limit comparison with $\sum \frac{n^{4}}{n^{5}}=\sum \frac{1}{n}$
(3) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{4}}{n^{5}+1}$
(1) What test, if any, for $\sum_{n=1}^{\infty} \frac{n^{5}}{n^{5}+1}$?
(a) terms $\nrightarrow 0$
(b) geometric
(0) integral test
(©) alternating series test (AST)
() other
(2) Contrast with $\sum_{n=1}^{\infty} \frac{n^{4}}{n^{5}+1}$
can't use terms $\nrightarrow 0$ (they are going to 0 !)-use another test integral (+, eventually decreasing, known integral) or limit comparison with $\sum \frac{n^{4}}{n^{5}}=\sum \frac{1}{n}$
(3) $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n} n^{4}}{n^{5}+1}$

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{5}}{n^{5}+1}
$$

(1) What test, if any, for $\sum_{n=1}^{\infty} \frac{n^{5}}{n^{5}+1}$?
(a) terms $\nrightarrow 0$
(b) geometric
(0) integral test
(©) alternating series test (AST)
() other
(2) Contrast with $\sum_{n=1}^{\infty} \frac{n^{4}}{n^{5}+1}$
can't use terms $\nrightarrow 0$ (they are going to 0 !)-use another test integral (+, eventually decreasing, known integral) or limit comparison with $\sum \frac{n^{4}}{n^{5}}=\sum \frac{1}{n}$
(3) $\quad \sum_{\substack{n=1 \\ \text { converges by AST }}}^{\infty} \frac{(-1)^{n} n^{4}}{n^{5}+1}$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(-1)^{n} n^{5}}{n^{5}+1} \\
& \text { can't apply AST } \\
& \quad \text { use terms } \nrightarrow 0!
\end{aligned}
$$

(4) What test, if any, for $\sum_{n=1}^{\infty} \frac{1}{2^{n}+1}$?
(a) terms $\nrightarrow 0$
D) geometric
() alternating series test (AST)
(a) other
(4) What test, if any, for $\sum_{n=1}^{\infty} \frac{1}{2^{n}+1}$?
(a) terms $\nrightarrow 0$
D) geometric
(0) alternating series test (AST)
(a) other
ratio test $L=\frac{1}{2}<1$ shows convergence as does limit comparison with $\sum \frac{1}{2^{n}}$
(4) What test, if any, for $\sum_{n=1}^{\infty} \frac{1}{2^{n}+1}$?
(a) terms $\nrightarrow 0$
(b) geometric
() alternating series test (AST)
(a) other
ratio test $L=\frac{1}{2}<1$ shows convergence as does limit comparison with $\sum \frac{1}{2^{n}}$
(5) What is true about $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$?
(2) ratio test will give $L<1$
(0) integral test will show convergence
(2) both of the above
(a) none of the above

Terms $\nrightarrow 0 \quad \sum a_{n}, a_{n} \nrightarrow 0 \quad$ inconclusive $\quad a_{n} \nRightarrow 0$ try this test first
Geometric $\quad \sum a x^{n}$, const x
Integral
pos, dec a_{n} known \int

Linearity $\quad \sum a_{n}+b_{n}$
Limit Comp $0<\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}<\infty$ pos terms
$\begin{array}{ll}\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{a_{n} \mid} \neq 1 & L<1 \\ \text { alternating terms } & \lim _{n \rightarrow \infty}\left|a_{n}\right|=0\end{array}$
Ratio
Alternating $\left|a_{n}\right|$ decreasing
$|x|<1$ to $\frac{a}{1-x} \quad|x| \geq 1$
$\begin{array}{ll}\int_{\text {converges }}^{\infty} a_{n} d n & \int_{\text {diverges }}^{\infty} a_{n} d n \\ \text { cos }\end{array}$
\int bounds \sum
both conv only 1 div
$\sum b_{n}$ conv
$\sum b_{n}$ div
same behavior
converges diverges
$L>1$

