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Taylor Polynomials and Series in Maple
Goal:  Explore Taylor polynomials and series  using a variety  of  representations (numerical, symbolic, 
and graphical) through pattern exploration assisted by appropriate technology, including the computer 
algebra system Maple, which is one of the course goals.

Read the text and hit return at the end of each Maple command line (the commands are in red).  

Compare your work with others in the class and ask me any questions as I make my way around!
with(Student[Calculus1]): with(plots):

What is a Taylor Polynomial/Series?
Polynomials are easy to work with, so we approximate functions with a polynomial.  
The first degree Taylor polynomial is the linear approximation of the tangent line that you worked with in 
Calculus I: f(a) + f'(a)(x-a).
To get a better match, use more derivatives! 

The nth degree Taylor polynomial is f(a) + f'(a)(x-a) + 
f 2 a

n!
 x a 2  + ... + 

f n a
n!

x a n

The full Taylor series is a power series centered at a that continues on from n=0 to n=

:      
f n a

n!
x a n

To compute a Taylor polynomial or series, it may be helpful to set up a table as follows: 

n            f n x              f n a             Taylor term 
f n a

n!
x a n

 
For n=0, the 0th derivative is the function value, and we evaluate it at the center of the power series.
TaylorApproximation(exp(x), x = 5, order = 0);

e5

For n=1,  f n x  is the 1st derivate is the function value, and then we evaluate it at the center of the power
series.  That gives the degree 1 Taylor term.  The full first degree polynomial adds the Taylor terms for n=
0 and n=1.  It is the linear tangent line approximation: 

TaylorApproximation(exp(x), x = 5, order = 1);
e5 x 4 e5

1) By hand activity: In class we obtained e5  e5 x 5  for the tangent line 
approximation, now called the degree 1 Taylor polynomial.  In your notes, expand the terms and collect 
like terms to show that this matches Maple's output.
In class we obtained e5  e5 x 5  .   Expand the terms and collect like terms to show that this 
matches Maple.
Yes it is the same! Expand e5  e5 x 5  
= e5  e5 x  5e5    
 = e5 x   e5  5e5      
 = e5x 4e5

 which is the Maple output
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Maple can compute Taylor polynomials of degree n and complete the algebra of collecting like terms very
fast!

TaylorApproximation(exp(x), x = 5, order = 50);
19865531204349908714282210763299 e5 x14

257028300224172538893154933081027864480972800

29676620427898196597483972217060403 e5 x13

27426296571241839395643701832601464360822374400

9021692610081052696957702169464878137 e5 x12

641353396742886090482745027470065012745384755200

25131857985225789323195536537981262087 e5 x11

148885609958169985290637238519836520815892889600

6915892123698497319052857408676397867 e5 x10

3724634423791610085448150706772769785878937600

1254407520306052442823390947969522699087 e5 x9

67557581119359345104210098743388271105393295360

131000828607096936194216160669761365506089 e5 x8

783911391727340869317320785418775614267987066880

104211159156945612742207917508227829223960987 e5 x7

77950189014887457692741085600079500143772963962880

482662210832169153753537217040511702214204999 e5 x6

51576064912105987044821169419601473779338502471680

5158452378268807830740747108180114231766732919 e5 x5

91869865624688789423587708028665125169446707527680

542374421486548937632172060505113205918874581287 e5 x4

1931892031422027114736015803117072346420365049724928

89220592334537300240492267573303051456525352020149 e5 x3

79449059792230865093518649903189600246537512669937664

8565176864115580823087258050834973648997728959949929 e5 x2

2542369913351387682992596796902067207889200405438005248

89118980263958100858474575797291 e5 x15

17295862702584943763018550705244166714032128000

25462565789703378899649439346101 e5 x16

79066800926102600059513374652544762121289728000

187224748453646531757739084691 e5 x17

9883350115762825007439171831568095265161216000

463140998030968610482585717 e5 x18

440074958772370686787644014763699974701056000
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354592326612803729527652297 e5 x19

6401715415891829834364009027265698069479424000

22876924299522971091312749 e5 x20

8260277955989457850792269712600900734812160000

5415938515057301642101 e5 x21

41066722792561225110472931809805614448640000

131476576776595493486801 e5 x22

21932462159006491534862233374836874364846080000

2347795971293030401271 e5 x23

9007975529591951880389845850379430542704640000

173910830349008111321 e5 x24

16014178719274581120693059289563432075919360000

12573072222496853 e5 x25

28944076632581299018025338507741888512000000

6688893495854653921 e5 x26

400354467981864528017326482239085801897984000000

139349961008812777 e5 x27

225199388239798797009746146259485763567616000000

12118217195824073 e5 x28

548311553975162288371555834370921859121152000000

68831832378173 e5 x29

90346790143634695243040449981572351787008000000

26257980879929 e5 x30

1032534744498682231349033714075112591851520000000

191951419039 e5 x31

235357184407787861557500331884768311377920000000

198488399 e5 x32

7609991876004433813027440966763586519040000000

234653053 e5 x33

325110201176408717349972757617371554775040000000

1408067509 e5 x34

49416750578814125037195859157840476325806080000000

5855137 e5 x35

54049570945577949259432970953888020981350400000000

85283633 e5 x36

1297189702693870782226391302893312503552409600000000
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709183 e5 x37

214267941962826870278466420567198940318924800000000

2883169 e5 x38

10021146824107595163792891054219765824146636800000000

40967 e5 x39

2326337655596406020166206851872445637748326400000000

125417 e5 x40

118431735193998851935734167004415414285369344000000000

33151 e5 x41

606962642869244116170637605897628998212517888000000000

28669 e5 x42

11329969333559223501851901976755741299967000576000000000

281 e5 x43

2768117507630946651020635142048277703969210368000000000

71 e5 x44

20146900356291401189383269304531825695054102528000000000

e5 x45

9699098989092988748267283364512787707923005440000000000

47 e5 x46

18866133119355733542343904327315159633011377438720000000000

e5 x47

20969452014419041673753866634076647024529537761280000000000

e5 x48

1460460657945420314219092829102750004531939571138560000000000

e5 x49

152070466008566890218063040830323844221888207844802560000000000

e5 x50

30414093201713378043612608166064768844377641568960512000000000000

104923416585415865082818910667981076313758060801867099 e5 x
15572015719277249558329655381025161648321352483307782144

839387332683326920662551285707646491219235781580952417 e5

124576125754217996466637243048201293186570819866462257152

Here is the degree 2 Taylor polynomial: 
TaylorApproximation(exp(x), x = 5, order = 2);

17 e5

2
4 e5 x

e5 x2

2
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In class we obtained e5  e5 x 5   
e5

2!
x 5 2.   Expand the terms and collect like terms to 

show that this matches Maple.

Yes it is the same! Expand e5  e5 x 5   
e5

2!
x 5 2

= e5  e5 x  5e5  
e5

2!
x2 10 x 25       

 = e5  e5 x  5e5  
e5

2!
x2 10 x 25         

=  e5  e5 x  5e5 
e5

2
x2 5e5 x

25
2

e5 

=  e5  5e5 25
2

e5  e5 x 5e5x
e5

2
x2    

= 
17
2

e5 4e5x
e5

2
x2

 which is the Maple output of the degree 2 Taylor polynomial.

Where does n! come from?
Maple collects like terms instead of presenting the factorials.  Regardless of which representation, the idea
is that the polynomial of degree n's nth derivative matches the nth derivative of the function locally, at the 
center point x=a.
As we showed in class, this results from dividing the nth derivative by n! because of the power rule 
applied to taking n derivatives of the x a n term (we used both power rule and chain rule in class)

Geometric/graphical representations of the Taylor series
Maple can also output Taylor polynomials as visual representations.  Here is the Taylor polynomial of 
degree 0 (e5 ), which is always a horizontal line at the function value at the point, plotted along with the 
function ex . 
The sign tells us whether the function is above or below the x axis at a.
TaylorApproximation(exp(x), x = 5, order=0,output=plot);
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f x Taylor polynomial

x
4 4.5 5 5.5 6

100

200

300

400
Taylor Polynomial

At x = 5, for the function f x = ex , a graph of f x  and the
approximating Taylor polynomial(s) of degree(s) 0.

Here is the Taylor polynomial of degree 1 (e5  e5 x 5)), which is the linear tangent line 
approximation, plotted along with the function ex .  The sign of the Taylor term 
f ' a

n!
x a  =  e5 x 5  tells us whether the function is increasing or decreasing at a.  

TaylorApproximation(exp(x), x = 5, order=1,output=plot);
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f x Taylor polynomial

x
4 4.5 5 5.5 6

0

100

200

300

400
Taylor Polynomial

At x = 5, for the function f x = ex , a graph of f x  and the
approximating Taylor polynomial(s) of degree(s) 1.

 The sign of the next Taylor term (degree 2) tells us about concavity. 
TaylorApproximation(exp(x), x = 5, order=2,output=plot);
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f x Taylor polynomial

x
4 4.5 5 5.5 6

100

200

300

400
Taylor Polynomial

At x = 5, for the function f x = ex , a graph of f x  and the
approximating Taylor polynomial(s) of degree(s) 2.

2) By hand activity: Using the concavity of the graph above at x=0, will the sign of the 
degree 2 Taylor term be positive or negative? Answer in your notes.

positive since it is concave up

Taylor polynomials for sin(x) about x=0
Notes activity Here n=15, and we are computing the Taylor polynomial for sin(x) about x=0.  
Execute and then write the first few 3 terms in your notes, ie the Taylor polynomial of degree 5:

TaylorApproximation(sin(x), x = 0, order=15);

x
1
6

 x3 1
120

 x5 1
5040

 x7 1
362880

 x9 1
39916800

 x11 1
6227020800

 x13

1
1307674368000

 x15

x
1
6

 x3 1
120

 x5
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Notice that instead of writing the Taylor series using factorial, like 3!, Maple multiplies out the factorials. 

Also notice that there are no even terms here, so the degree 4 Taylor polynomial is the same as the degree 
3 one--the Taylor term of degree 4 has a 0 coefficient.

Notes activity First plot the linear approximation (Taylor polynomial of degree 1), and then plot 
of the 15th degree Taylor polynomial approximation, and then sketch them in your notes:

TaylorApproximation(sin(x), x = 0, order=1,output=plot);

f x Taylor polynomial

x

5 
16

3 
16 16

0
16 8

3 
16 4

5 
16

1

0.5

0.5

1
Taylor Polynomial

At x = 0, for the function f x = sin x , a graph of f x  
and the approximating Taylor polynomial(s) of degree(s) 1.

TaylorApproximation(sin(x), x = 0, order=15,output=plot);
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f x Taylor polynomial

x

5 
16 8

0
16 8

3 
16 4

5 
16

0.8

0.6

0.4

0.2

0.2

0.4

0.6

0.8
Taylor Polynomial

At x = 0, for the function f x = sin x , a graph of f x  
and the approximating Taylor polynomial(s) of degree(s) 15.

Where did f(x) go here?  Well it is such a good approximation at that point, that the difference between the
polynomial and the function is not observable near x=0 within this small (local) plotting area.  The 
functions would separate further away from 0:
TaylorApproximation(sin(x), x = 0, -7.5..7.5, order=15,output=plot)
;
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f x Taylor polynomial

x
6 4 2 0 2 4 6

1

0.5

0.5

1
Taylor Polynomial

At x = 0, for the function f x = sin x , a graph of f x  
and the approximating Taylor polynomial(s) of degree(s) 15.

Class webpage activity: To better process this local to global behavior, go back to the class
highlights webpage and examine the Taylor series animation for sin(x)

Taylor polynomials for sin(x) about 1.
Want to change what x=a is?  No problem.  Here is the 2nd degree polynomial for sin(x) about x=1.  
Write the polynomial in your notes.

TaylorApproximation(sin(x), x = 1, order=2);
sin 1

2
cos 1  x cos 1

sin 1  x2

2
sin 1  x

Where does the 1/2 coefficient of sin(1) come from?  Well Maple collects like terms.  

3) By hand activity: Write the table in your notes and fill in three rows, for n=0, n=1, and n=
2.  
f n x  stands for the nth derivative of f(x) = sin(x), left as a function of x, while a=1 is plugged into 
f n a .  
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n            f n x              f n a             Taylor term 
f n a

n!
x a n

0            sin(x)           sin(1)              
sin 1

0!
x 1 0 = sin 1

1            cos(x)           cos(1)             
cos 1

1!
x 1 1 = cos 1 x 1  = cos 1  x  cos 1

2             -sin(x)          -sin(1)            
sin 1
2!

x 1 2 

4) By hand activity:  Compute the 2nd degree polynomial for sin(x) about x=1 by hand in 
your notes by adding up the Taylor terms.
 

sin 1  + cos 1 x 1   
sin 1
2!

x 1 2 

Note that if we foiled it out, and collected like terms, then we could show that these are the same, and I've 
done this in solutions:

f(x) = sin(x) so f(1) = sin(1) and the first Taylor term is sin(1)
f'(x) = cos(x) so f'(1) = cos(1) and the second Taylor term is cos(1) (x-1)

f 2 (x) = -sin(x) so f 2 (1) = -sin(1) and the 3rd Taylor term is -sin(1)
1
2!

 x 1 2

So the 2nd degree Taylor polynomial for sin(x) about x=1 is

sin(1) + cos(1) (x-1) + sin(1)
1
2!

 x 1 2

Maple looks a bit different.  To see they are the same, let's multiply out what we obtained by hand: 

sin(1) + cos(1) (x-1) + sin(1)
1
2!

 x 1 2  

= sin(1) + cos(1) (x) -cos(1) + 
sin 1

2
 x2 2 x  1  

= sin(1) + cos(1) (x) -cos(1)  
sin 1

2
 x2 sin 1   x  

sin 1
2

 

Now combine the first and last term to see that 

=
1
2

 sin 1 cos 1  x cos 1
1
2

 sin 1  x2 sin 1  x

which matches Maple.

Notes activity: Let's compare with the plot. Execute and then sketch the degree 2 Taylor 
polynomial in your notes.

TaylorApproximation(sin(x), x = 1, order=2,output=plot);
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f x Taylor polynomial

x
16 8

3 
16 4

5 
16

7 
16 2

5 
8

0

0.2

0.4

0.6

0.8

1
Taylor Polynomial

At x = 1, for the function f x = sin x , a graph of f x  
and the approximating Taylor polynomial(s) of degree(s) 2.

Taylor polynomials for arctan(x) about x=0
Notes activity: Sketch this plot in your notes.
TaylorApproximation(arctan(x), x = 0, order=11,output=plot);
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f x Taylor polynomial

x
1 0.5 0 0.5 1

0.6

0.4

0.2

0.2

0.4

0.6

Taylor Polynomial

At x = 0, for the function f x = arctan x , a graph of f x  
and the approximating Taylor polynomial(s) of degree(s) 11.

The degree 11 Taylor polynomial approximates the function very well between -1 and 1.  However, 
outside of that range it doesn't approximate the function well: 
TaylorApproximation(arctan(x), x = 0, -1.3..1.3, order=11,output=
plot);
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f x Taylor polynomial

x
1 0.5 0 0.5 1

0.8

0.6

0.4

0.2

0.2

0.4

0.6

0.8

Taylor Polynomial

At x = 0, for the function f x = arctan x , a graph of f x  
and the approximating Taylor polynomial(s) of degree(s) 11.

5) By hand activity:  Using the graph above, approximate the error between the Taylor 
polynomial of degree 11 and the function on the far right side of the graph (x=1.3).  To do this, estimate 
the y-value difference from the tick marks on the graph, and write your estimate in your notes.  We'll be 
computing other errors graphically like we did here, as well as algebraically in 10.4.

We look at x=1.3 and measure the y-value difference, which is approximately .92 or similar (you might 
have said .9 for example), since the Taylor polynomial goes slightly below the axis and the function value
goes up past the .8 tickmark, up to the .9 tickmark.

Maple activity: Modify the Maple command from above to find the 11th degree polynomial that 
approximates arctan(x) at x=0.    
So you'll need to change the function, the x value, and the order in the command.  So modify sin(x), 1, 
and 2 below:

TaylorApproximation(arctan(x), x = 0, order=11); 

x
1
3

 x3 1
5

 x5 1
7

 x7 1
9

 x9 1
11

 x11

6) By hand activity:  Next, using your Maple responses from above, write the general 
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summation form for the Taylor series in your notes, like James Gregory did for this series back in 1671.  
Start the index at 0.
Hint:  n and (2n+1) will both be useful. 

Notice that the index of the series and the degree of the Taylor polynomial can be different, even as 
people may use n to stand for two different things!   

We can see that 1 n  will work for the alternating signs of the series, because the first term of the 
series (starting at 0), x, has a positive sign, while the second term of the series (for an index of 1) has a 
negative sign.  

Since the first term is x for the index starting at 0, and we want odd powers, 2 n 1 will work for the 
power and the denominator of the fraction: 

n = 0
 1 n 1

2 n 1
x2 n 1

Using the ratio test on this series representation, we can compute the radius of convergence, just like we 
did in 9.5 on power series, since a Taylor series is a power series: 

limn

an 1

an
= limn  

1 n 1 1
2 n 1 1

x2 n 1 1

1 n 1
2 n 1

x2 n 1
 = limn  

 1
2 n 2 1

x2 n 2 1

 
1

2 n 1
x2 n 1

 = limn  

 1
2 n 3

x2 n 3

 
1

2 n 1
x2 n 1

= limn   2 n 1
2 n 3

x2 n 3  2 n 1  = limn  

 2 n 1
2 n 3

x2 n 3  2 n 1 

 = limn   2 n 1
2 n 3

x2 n 3  2 n 1  = limn   2 n 1
2 n 3

x2   = limn  
2 n 1
2 n 3

x2  

 Since this approaches infinity over infinity, we use L'Hopitals to continue, by taking the derivative of the 
numerator divided by the derivative of the denominator, with respect to n

= limn  
2 
2 

x2   =  x2  

The ratio test converges when L  < 1.  Here this means that L = x2  1.  
 So -1 < x2  < 1.  This tells us that -1 < x < 1.  Thus the radius of convergence r =1.



(3)(3)

Ask me any questions on the above steps and show me your paper responses as you continue to: 

Class webpage activity: Go back to the class highlights webpage and examine the Taylor 
series animation for arctan(x) to better appreciate the radius of convergence.  


