Slicing for Volume, Density and Work Practice Sheet

Come on in to office hours when you can! Sometimes it makes all the difference if I can go over material with you one on one. For example, we can talk through solutions to any or all of the Wiley problems in chapter 8 , you can work on problems online and ask me questions or talk through your process as you do so, or whatever you would find useful. I care about your understanding and am always happy to help.

1. Cone (radius 2 ft and height 5 ft) standing on its tip
(a) What is the volume of one slice of the cone via slicing horizontally. Show reasoning and a picture.

Solution:

cylindrical disk volume $=\pi$ radius of slice ${ }^{2} \Delta y$
(b) Find the volume of the entire cone via slicing horizontally. Show reasoning and pics.

Solution:

Need to solve for the radius of the slice because we can't have two different variables (r and the y in Δy) in the Riemann sum or the integral.

Similar triangles: $\frac{\text { radius of slice }}{y}=\frac{2}{5}$ so radius $=\frac{2 y}{5}$
Sub in: volume of a cylindrical disk slice $=\pi$ radius of slice ${ }^{2} \Delta y=\pi\left(\frac{2 y}{5}\right)^{2} \Delta y$ Volume of the entire cone:
y begins at the bottom of the cone at 0 , and ends at the top of the cone at 5 , so $\int_{0}^{5} \pi\left(\frac{2 y}{5}\right)^{2} d y$
(c) If the density $\delta(y)$ of the cone varies with it's height y, what is the total mass. Show reasoning.
Slice perpendicular to y where $\delta(y)$ is approximately constant. Then slicing is as above in this example, so the same process would be followed to solve for the volume.
mass $=\int_{0}^{5} \delta(y)$ volume $=\int_{0}^{5} \delta(y) \pi\left(\frac{2 y}{5}\right)^{2} d y$
(d) If the cone is partially filled with fresh water that weighs $62.5 \mathrm{lbs} / f t^{3}$ to a height of 4 ft , what is the total work required to pump the water out over the top? Show reasoning and pics.
$\mathrm{F} \mathrm{d}=\left(62.5 l b / f t^{3} \times\right.$ volume $) \times$ distance the slice must be displaced

Since the height of the cone is 5 , the displacement needed for a slice at height y is $5-y$ $\mathrm{F} \mathrm{d}=\left(62.5 \mathrm{lb} / f t^{3} \times\right.$ volume $) \times$ distance the slice must be displaced

$$
=\left(62.5 l b / f t^{3} \times \text { volume }\right) \times(5-y)
$$

so we must solve for the volume, which we did in part b.

$$
=\left(62.5 l b / f t^{3} \times \pi\left(\frac{2 y}{5}\right)^{2} \Delta y\right) \times(5-y)
$$

The only remaining item is to figure out the integration limits. The water begins at the bottom, $y=0$ and stops at $y=4$, so those are our limits.
Work $=\int_{0}^{4}\left(62.5 \times\left(\pi\left(\frac{2 y}{5}\right)^{2} \times d y\right) \times(5-y)=\int_{0}^{4} 62.5 \pi \frac{4 y^{2}}{25}(5-y) d y\right.$

2. Cylinder (radius 4 ft and length 12 ft) laying sideways

(a) If the cylinder is buried 10 feet under ground, with the height h measured from ground level to a slice, and it is completely filled with salinated water, which weighs $64 \mathrm{lbs} / f t^{3}$ (more than fresh water which is $62.5 \mathrm{lbs} / f t^{3}$), what is the work required to pump the salinated water above ground? Show reasoning and pics.
$\mathrm{F} \mathrm{d}=\left(64 l b / f t^{3} \times\right.$ volume $) \times$ distance the slice must be displaced

$$
=\left(64 l b / f t^{3} \times \text { volume }\right) \times h
$$

so we must solve for the volume:

The volume of the rectangular box slice is length \times width (side 1) \times height

$$
=12 \times 2 \sqrt{4^{2}-(14-h)^{2}} \times \Delta h
$$

$\mathrm{F} \mathrm{d}=\left(64 l b / f t^{3} \times\right.$ volume $) \times$ distance the slice must be displaced

$$
\begin{aligned}
& =\left(64 l b / f t^{3} \times \text { volume }\right) \times h \\
& =\left(64 l b / f t^{3} \times\left(12 \times 2 \sqrt{4^{2}-(14-h)^{2}} \times \Delta h\right)\right) \times h
\end{aligned}
$$

Add up over the entire water supply. The water begins when h starts at 10 at the top of the tank, and goes to $10+2 \times$ radius of the cylinder $=10+4+4$ to the bottom of the tank.
Work $=\int_{10}^{18}\left(64 \times\left(12 \times 2 \sqrt{4^{2}-(14-h)^{2}} \times d h\right) \times h\right.$

You try it!

3. Cylinder (radius 3 ft and length 8 ft) laying sideways. Answer the first three questions you did for the cone for the cylinder.
4. Sphere (radius 5 ft). Answer the same questions you did for the cone for the sphere.
5. Pyramid (radius 5 ft and height 20 ft). Answer the same questions you did for the cone for the pyramid.
