8.4 Density, Mass and 8.5 Work — builds on 8.1, 8.2

- 1. 8.4 Density, Mass and Volume Connections
 - (a) Slice so density is approximately constant and sketch a picture of the resulting slice.
 - (b) Which is the infinitesimal part of the slice? Circle: Δx or Δy or Δh or Δr
 - (c) What is the length, area or volume we'll use (in that variable–the infinitesimal part too)? if a length, like along a rod, it is the infinitesimal part, like Δx

if an area like rectangle, where the width is the infinitesimal part, like Δx , and the height is a function f(x), g(x) - f(x), a constant, or the equation of a line mx + b

if a volume many come from earlier in 8.1 or 8.2 (see those practice sheets), like box (length width height) or cylinder/disk ($\pi \cdot \text{radius}^2$ height), where one of those lengths is the infinitesimal portion

(d) The Riemann sum turns into an integral
$$\int \delta \cdot \text{length or } \int \delta \cdot \text{area or } \int \delta \cdot \text{volume in that variable}$$

2. 8.5 Work: Varying Force

Work is force \times distance displaced only applies if the force is constant while it is exerted over the distance. Integrals apply when we vary the force.

- (a) Slice so that the force is approximately constant on a slice for its displacement and sketch a picture of the resulting slice.
- (b) Which is the infinitesimal part of the slice? Circle: Δx or Δy or Δh or Δr
- (c) What is the displacement for that slice in terms of the slicing variable?

(d) The Riemann sum is $\sum F \cdot$ displacement, like for Hook's Law to stretch (and hold) a spring, where F(x) = kx is constant for displacement Δx and so the work is approximately $\sum F(x)\Delta x$ We may need area or volume here too (see above), like F = weight (force in lbs) = 62.4 lbs/ft³ × volume calculated as in 8.1 with work on a slice = 62.4 lbs/ft³ × volume × slice displacement

= density \times volume \times slice displacement

(e) The Riemann sum turns into an integral $\int F \cdot \text{displacement.}$