8.4 Density, Mass and Volume Connections-builds on 8.1, 8.2

1. Slice so density is approximately constant and sketch a picture of the resulting slice.
2. Which is the infinitesimal part of the slice? Circle: Δx or Δy or Δh or Δr
3. What is the length, area or volume we'll use (write it in that variable-the infinitesimal part too)? if a length, like along a rod, it is the infinitesimal part, like Δx
if an area like rectangle, where the width is the infinitesimal part, like Δx, and the height is a function $f(x), g(x)-f(x)$, a constant, or the equation of a line $m x+b$ or new: area of annuli/rings $=\pi\left(r_{\text {outer }}^{2}-r_{\text {inner }}^{2}\right)=\pi(r+\Delta r)^{2}-\pi r^{2}=\pi r^{2}+2 \pi r \Delta r+\pi \Delta r^{2}-\pi r^{2}=$ $2 \pi r \Delta r+\pi \Delta r^{2}$, and when Δr is small Δr^{2} goes to 0 faster, so we ignore that term in the limit, and use $2 \pi r \Delta r$ for the area as we turn this into an integral
if a volume many come from earlier in 8.1 or 8.2 (see those practice sheets), like box (length•width•height) or cylinder/disk $\left(\pi \cdot\right.$ radius $^{2} \cdot$ height $)$, where one of those lengths is the infinitesimal portion
4. The Riemann sum turns into an integral $\int \delta$ • length or $\int \delta$. area or $\int \delta \cdot$ volume in that variable
5. Slice so density is approximately constant and sketch a picture of the resulting slice.
6. Which is the infinitesimal part of the slice? Circle: Δx or Δy or Δh or Δr
7. What is the length, area or volume we'll use (write it in that variable-the infinitesimal part too)? if a length, like along a rod, it is the infinitesimal part, like Δx
if an area like rectangle, where the width is the infinitesimal part, like Δx, and the height is a function $f(x), g(x)-f(x)$, a constant, or the equation of a line $m x+b$ or new: area of annuli/rings $=\pi\left(r_{\text {outer }}^{2}-r_{\text {inner }}^{2}\right)=\pi(r+\Delta r)^{2}-\pi r^{2}=\pi r^{2}+2 \pi r \Delta r+\pi \Delta r^{2}-\pi r^{2}=$ $2 \pi r \Delta r+\pi \Delta r^{2}$, and when Δr is small Δr^{2} goes to 0 faster, so we ignore that term in the limit, and use $2 \pi r \Delta r$ for the area as we turn this into an integral
if a volume many come from earlier in 8.1 or 8.2 (see those practice sheets), like box (length•width•height) or cylinder/disk ($\pi \cdot$ radius $^{2} \cdot$ height), where one of those lengths is the infinitesimal portion
8. The Riemann sum turns into an integral $\int \delta$ • length or $\int \delta$. area or $\int \delta \cdot$ volume in that variable
