Series Theorems

- Geometric Series: If $\sum_{i=0}^{\infty} ax^i$ has x as a fixed ratio of successive terms and a constant then $\sum_{i=0}^{n} ax^i = \frac{a(1-x^{n+1})}{1-x}$ and so $\sum_{i=0}^{\infty} ax^i = \frac{a}{1-x}$ provided |x| < 1 and diverges otherwise.
- Terms not Going to 0: If $\sum a_n$ has $\lim_{n \to \infty} a_n \neq 0$, then the infinite series does not converge.
- Linearity: $\sum a_n + b_n$ converges to the sum of the individual series if both converge and diverges when only one diverges.
- Integral Test: If $\sum a_n$ has terms decreasing and $a_n > 0$ (eventually) and $\int_1^\infty a_n dn$ is known, then the series behaves the same way as it since $\int_a^\infty f(x)dx \le \sum a_n \le 1$ st term $+ \int_a^\infty f(x)dx$.
- Limit Comparison Test: If $a_n > 0$ and $b_n > 0$ (eventually) and $0 < \lim_{n \to \infty} \frac{a_n}{b_n} < \infty$, then $\sum a_n$ behaves the same way as $\sum b_n$.
- Ratio Test: For $\sum a_n$, if $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = L$, then: L < 1 implies convergence; L > 1 implies divergence; L = 1 gives no information.
- Alternating Series: If we have an alternating series with $|a_n| \ge |a_{n+1}|$ and $\lim_{n\to\infty} |a_n| = 0$, then the alternating series converges, and the truncation error of using $S_n \le |a_{n+1}|$.
- Taylor Series and Taylor Polynomial: If f(x) has continuous derivatives then it can be approximated near a by the series $\sum_{i=0}^{\infty} \frac{f^{(i)}(a)}{i!} (x-a)^i$ or n^{th} degree polynomial $\sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x-a)^i$.
- Taylor Polynomial Error: The difference between the n^{th} degree Tayor polynomial and f(x) evaluated at a value of x near a is at most $\left|\frac{M}{(n+1)!}(x-a)^{n+1}\right|$, where M is the upper bound on the absolute value of the $(n+1)^{st}$ derivative of f(x) between x and a.