Series Theorems

- Geometric Series: If $\sum_{i=0}^{\infty} a x^{i}$ has x as a fixed ratio of successive terms and a constant then $\sum_{i=0}^{n} a x^{i}=\frac{a\left(1-x^{n+1}\right)}{1-x}$ and so $\sum_{i=0}^{\infty} a x^{i}=\frac{a}{1-x}$ provided $|x|<1$ and diverges otherwise.
- Terms not Going to 0: If $\sum a_{n}$ has $\lim _{n \rightarrow>\infty} a_{n} \neq 0$, then the infinite series does not converge.
- Linearity: $\sum a_{n}+b_{n}$ converges to the sum of the individual series if both converge and diverges when only one diverges.
- Integral Test: If $\sum a_{n}$ has terms decreasing and $a_{n}>0$ (eventually) and $\int_{1}^{\infty} a_{n} d n$ is known, then the series behaves the same way as it since $\int_{a}^{\infty} f(x) d x \leq \sum a_{n} \leq 1$ st term $+\int_{a}^{\infty} f(x) d x$.
- Limit Comparison Test: If $a_{n}>0$ and $b_{n}>0$ (eventually) and $0<\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}<\infty$, then $\sum a_{n}$ behaves the same way as $\sum b_{n}$.
- Ratio Test: For $\sum a_{n}$, if $\lim _{n->\infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=L$, then: $L<1$ implies convergence; $L>1$ implies divergence; $L=1$ gives no information.
- Alternating Series: If we have an alternating series with $\left|a_{n}\right| \geq\left|a_{n+1}\right|$ and $\lim _{n->\infty}\left|a_{n}\right|=0$, then the alternating series converges, and the truncation error of using $S_{n} \leq\left|a_{n+1}\right|$.
- Taylor Series and Taylor Polynomial: If $f(x)$ has continuous derivatives then it can be approximated near a by the series $\sum_{i=0}^{\infty} \frac{f^{(i)}(a)}{i!}(x-a)^{i}$ or $n^{t h}$ degree polynomial $\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i}$.
- Taylor Polynomial Error: The difference between the $n^{\text {th }}$ degree Tayor polynomial and $f(x)$ evaluated at a value of x near a is at most $\left|\frac{M}{(n+1)!}(x-a)^{n+1}\right|$, where M is the upper bound on the absolute value of the $(n+1)^{\text {st }}$ derivative of $f(x)$ between x and a.

