9.3 Integral Test

Goal: How do we determine if a series that isn't a geometric series converges?

Suppose $a_n = f(n)$, where f(x) is decreasing and positive. We will consider $\sum_{n=1}^{\infty} a_n$.

2. In each box, put the element of the sequence a_n that gives the area of that box. Use the fact that $a_n = f(n)$ and $\Delta x = 1$.

3. What relationship between the improper integral $\int_{1}^{\infty} f(x) dx$ and the sum $\sum_{n=1}^{\infty} a_n$ is illustrated by the picture on the left?

by the picture on the right?

4. Evaluate
$$\int_{1}^{\infty} \frac{1}{x} dx$$
.

5. Determine if
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 converges or diverges.

Example: Show $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.

Examples: Do the following converge or diverge?	If they converge, give bounds on the sum.
$\sum_{n=1}^{\infty} \frac{1}{n^5}$	$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$

 $\sum_{n=0}^{\infty} \frac{1}{1+n^2}$

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^4}$$