9.3 Integral Test

Goal: How can we use our prior improper integral work to help us understand certain series $\sum_{n=1}^{\infty} a_n$.? 1. Suppose $a_n = f(n)$, where f(x) is decreasing and positive.

In each box, put the element of the sequence a_n that gives the area of that box. Use $a_n = f(n)$ and $\Delta x = 1$.

Draw the Left Sum with $\Delta x = 1$ **Draw the Right Sum** with $\Delta x = 1$ starting at x = 1, and label each a_n starting at x = 0, and label each a_n f(x) f(x) $a_1 = f(1)$ a1 Ō 2 3 1 4 5 3 4 0 1 2 5 R

2. What inequality relationship between the improper integral $\int_{1}^{\infty} f(x) dx$ and the sum $\sum_{n=1}^{\infty} a_n$ is illustrated by the picture on the left?

by the picture on the right? (Hint: you'll need to bring in a_1 to the inequality)

3. Evaluate
$$\int_{1}^{\infty} \frac{1}{x} dx$$
.

4. Look at the integral test on the Series Theorems sheet. Determine if $\sum_{n=1}^{\infty} \frac{1}{n}$ converges or diverges.

Example: Use the integral test to show that $\sum_{n=1}^{\infty} \frac{1}{n^5}$ converges.

In fact, by extending our work on $\sum_{n=1}^{\infty} \frac{1}{n}$ and $\sum_{n=1}^{\infty} \frac{1}{n^5}$ we use the integral test on any fixed power of n:

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges if } p > 1 \text{ and diverges if } p \le 1.$$

9.1, 9.2 and 9.3 Group Work

For sequences EXPLAIN or SHOW WORK documenting why your answer is correct:

- (a) does it converge or diverge, and why
- (b) what is the limit if it converges?
- (c) show work for L'Hôpital's Rule if it applies.

For series EXPLAIN or SHOW WORK documenting why your answer is correct:

- (a) (LG 3) choose a series test we can successfully use on it from among geometric series, terms not going to 0, linearity, or integral test
- (b) fully document why the series test works, including any assumptions
- (c) specify whether the series converges or diverges, and why

$$\sum_{n=1}^{\infty} e^n$$

$$s_n = \frac{1}{e^{2n}}$$

$$\sum_{n=1}^{\infty} \frac{1}{e^{2n}}$$

$$\sum_{n=0}^{\infty} \frac{1}{1+n^2}$$

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^4}$$